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Mathematical model and some
nonlinear effects of heat and mass
transfer in multiphase media under

action of high-frequency
electromagnetic radiation1

A. A. Kislitsin

Tyumen State University, Tyumen

Abstract. Theapplicationofhigh-frequencyelectromagnetic radiation isoneof the
promisingmethods inoilandgastechnologies,thatcanbewelluseforstruggleagainst
pitch, paraffin or gas-hydrate fall-out inwells and in pipelines, for action on reservoir
and for otherpurposes. During in theoperationofwells on their surfaces theasphalt-
pitch-paraffinfall-outareoccurscausedof lowingoftemperatureandpressure. These
fall-out fills the space between pipes, that bring to a stop of well sometimes. The
high-frequency electromagnetic heating is convenient mean (and the only possible
way in some cases) to eliminate these complications. By that the experiments and
the numerical simulation shows, that some nonlinear effects are possible. These
effects are caused due to some media have temperature dependence of absorption
coefficient. This dependence can be have more or less expressed”resonance“ view,
to say have maximum by certain temperature. The position, height and width
of that ”resonance“ dependences of electromagnetic radiation frequency and of
dielectric properties of medium. These nonlinear properties can be used to rise
of heating efficiency. If the radiation frequency is correct, one can to realize the
heating in a ”temperature wave“ regime, that essentially rises the velocity of
heating. And what is more, if one will use the nonlinear dependences α(T ),
one can to realize a ”reverse temperature wave“, that will move backwards:
from far end of tube to the source of radiation, i.e. one can receive effects,
those are impossible by usual conditions. Inthispaperthe temperaturedependence
of absorption coefficient is investigated and the mathematical modelling of high-
frequency electromagnetic heating (with due regard for this dependence) is carried
out.

1 Работа была доложена на Международной конференции по многофазным систе-
мам, посвященной 60-летию академика Р. И. Нигматулина (15–17 июня 2000 года,
г. Уфа)
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1 The temperature dependence of absorption coef-

ficient of electromagnetic radiation

The absorption coefficient of electromagnetic radiation a in medium by ε′′<<ε′

is:

α =
ωε′′

CR

√
ε′
, (1)

where ε′, ε′′ — are real and imaginary parts of dielectric permittivity; CR —
velocity of light in vacuum; ω = 2pf .

In terms of semiempirical Cole-Cole model of dielectric relaxation the
real and imaginary parts of dielectric permittivity are:

ε′ = ε∞ +

+
(εs − ε∞)

[
1 + (ωτ0)

1−β sin(βπ/2)
]

1 + 2(ωτ0)1−β sin(βπ/2) + (ωτ0)2(1−β)
,

(2)

ε′′ =
(εs − ε∞)[1 + (ωτ0)

1−β cos(βπ/2)]

1 + 2(ωτ0)1−β sin(βπ/2) + (ωτ0)2(1−β)
, (3)

where εS , ε∞ are static and high-frequency limits ε′ correspondingly, τ0 —
the most probable relaxation time of dielectric molecules; β — parameter,
that determines the width of relaxation time spectrum, its values are in limits
0≤β<1.

If all of dielectric molecules have the sole relaxation time τ0, than β = 0,
Cole-Cole model reduces to the Debye model, and equations (2), (3) become
the following view:

ε′ = ε∞ +
εs − ε∞

1 + (ωτ0)2
, (4)

ε′′ =
εs − ε∞

1 + (ωτ0)2
ω τ0. (5)

Parameters εS , ε∞, β have a weak temperature dependence [1, 2],
therefore one can to take in the first approximation, that the dependence
α(T ) is determined only by the temperature dependence of relaxation time.
This dependence is given as a rule in the following view:
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τ0 = τ∞ exp(Eτ/RT ) = τ∞ exp(Tτ/T ), (6)

where Eτ , Tτ = Eτ/R are activation energy and activation temperature,
τ∞ — is the high-temperature limit of relaxation time, R is the gas constant
per mole.

If ωτ0 changes from 0 to ∞, the real part of dielectric permittivity changes
from εS to ε∞. These parameters differ weakly, therefore substitution of
value

√
ε′ on its average

√
(εS + ε∞)/2 in the equation (1) led to mistake

for a not larger, that a few per centum. For example, the mistake for the
Russkoe oil will about 7%; that is not larger, than the error by experimental
measurement of ε′′ (about 10%). By this the maximum values ε′′ and a are
risen at ωτ0 = 1 and equals accordingly:

ε′′m =
(εs − ε∞) cos(βπ/2)

2(1 + sin(βπ/2))
, (7)

αm =
ω(εs − ε∞)

CR

√
2(εs + ε∞)

· tg
[
(1− β)π

4

]
. (8)

By β = 0 the equation 8 becomes the following view:

αm =
ω(εs − ε∞)

CR

√
2(εs + ε∞)

. (9)

The frequency, by which the maximum value of absorption coefficient
corresponded to intended temperature Tα is determined from condition ωm ·
τ(Tα) = 1 whence it follows:

ωm =
1

τ∞
· (−Tτ/Tα). (10)

Thus one can always to obtain, by select the frequency of electromagnetic
radiation, to the peak of absorption coefficient was corresponded to intended
temperature Tα. The height and the width of this peak are determined by
physical parameters of medium.

One can to find the height of the peak by substitution of (10) in (9):

αm =
(εs − ε∞)

CR

√
2(εs + ε∞)

· tg
[
(1− β)π

4

]
· 1

τ∞
exp

(
−Tτ
T α

)
, (11)

Analogously one can to find the width of the peak ∆T from condition
α = αm/2:

∆T =
Tτ · ln(y2/y1)

(ln y1 + Tτ/Tα) · (ln y2 + Tτ/Tα)
, (12)



A. A. Kislitsin 279

where

y1,2 =

[(
2 + sin

βπ

2

)
±
√(

2 + sin
βπ

2

2

− 1

)] 1
1−β

(13)

In particular, at β = 0:

y1 = 2−
√
3 ≈ 0.3 ; y2 = 2 +

√
3 ≈ 3.7 .

In respect that usually Tτ>>Tα, one can to simplify the equation (12):

∆T ≈ T 2
α

Tτ
· 2 ln(4 + βπ)

1− β
. (14)

In particular, at β = 0:

∆T ≈ 2.77 · T
2
α

Tτ
. (15)

These formulae are bulky and uncomfortable not only for analytic
research, but for numerical simulation. Therefore it is desirable to
substitute their on the more simple approximate formulae. The break-line
approximation is the simplest. By this the peak α(T ) have a view of isosceles
triangle; its height is αm, and its base is 2∆T . Outside peak the absorption
coefficient is taken as constant, that equals to α0. The formula, which
determines this approximation, can be written in the following view:

α(T ) =






α0 (at T < Tα −∆T )

α0 +
αm − αo

∆T
· (T − Tα −∆T ) (at Tα −∆T < T < Tα)

α0 +
αm − αo

∆T
· (Tα +∆T − T ) (at Tα < T < Tα +∆T )

α0 (at T < Tα −∆T )
(16)

Parameter α0 is taken as α at the temperature Ta + 2∆Tα.

2 The model and the set of equations

The space between two coaxial metallic circular pipes (R1 — the inner pipe
radius, R2 — the outer pipe radius) is filled by easily melted dielectric, that
formatted the plug, which length is H. It is, for example, the space between
the outer column and the compressor-pump tube of a well, filled by paraffin,
frozen high-viscosity oil, ice, gas-hydrate etc. The electromagnetic radiation
is directed along this coaxial line to eliminate the plug. When electromagnetic
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radiation meets a plug on its way, it heats that to melting temperature and
therefore eliminates the plug.

The substance of the plug is taken as homogeneous and its physical para-
meters (density ρ, heat capacity c, heat conductivity λ) are taken as constant
but different for solid and liquid. The heat exchange with surrounding
medium is taken account on the lateral surface (with the intended coefficient
of heat exchange κ), but the heat exchange on the inner surface is taken as
neglected.

The characteristic of the plug length H is ∼ 100m; of the outer pipe
radius R2 is ∼ 0.05m, of the inner pipe radius R1 is 0.01m. As H >>R2,
than it is reasonably to use the one-dimensional heat-transfer equation for
description of the heating process, but it is necessary to introduce the drain
of heat in this equation to take account the heat exchange with surrounding
medium. In terms of assumptions made above this equation can be written
in the following view:

ρc
∂T

∂t
=

∂

∂z
(λ
∂T

∂z
) + α ·W − b (T − T0), (17)

where b = 2kR2/(R
2
2−R2

1) is heat exchange coefficient on the lateral surface
with surrounding medium; T0 — the temperature of the surrounding medium;
W — density of electromagnetic radiation power.

The physical parameters are intended as follows:

ρ =

{
ρ0 at T ≤ Ts
ρ1 at T > Ts

(18)

λ =

{
λ0 at T ≤ Ts
λ1 at T > Ts

(19)

c =





c0 at T < Ts
Lδ(T − Ts) at T = Ts
c1 at T > Ts

(20)

where Ts, L— are the temperature and the heat of transition (melting) accor-
dingly; δ(T−Ts) — delta-function, that was replaced by numerical simulation
on the delta-similar function — ”footstep“ with the limited width 2∆Ts:

c(T ) =





c0 at T < Ts −∆Ts
c0 + c1

2
+

L

2∆Ts
at Ts −∆Ts < T < Ts +∆Ts

c1 at T > Ts +∆Ts

(21)

The density of electromagnetic radiation power W is:
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W =W0 · exp { −
z∫

0

α(z′, t) dz′} =W0 · e−Γ(z,t), (22)

where W0 = P/[π(R2
2 − R2

1)]G — the density of electromagnetic radiation
power on the top surface of plug,

Γ(z, t) =

z∫

0

α(z′, t) dz′ (23)

— the integral absorption coefficient. If one can consider the absorption co-
efficient α(T ) as constant, that Γ = αz, and formula (22) is reduced to
Lambert law of absorption:

W =W0 · exp(−αz). (24)

The heat exchange on the top and bottom of plug is taken as neglected,
and boundary conditions to equation (17) are:

∂T

∂z

∣∣∣∣
z=0

=
∂T

∂z

∣∣∣∣
z=H

= 0. (25)

It is comfortable to write these equations in the measureless form: Let it
be the following designations: τ = λ0t/(c0ρ0H

2) = a0t/H
2 — the measureless

time, θ = (T − T0)/(Ts − T0) — the measureless temperature, x = z/H —
the measureless coordinate, Φ = cρ/(c0ρ0) — the measureless volume heat
capacity, Λ = λ/λ0 — the measureless heat conductivity, J = L/[c0(Ts −
T0)] — the measureless heat of melting, Q0 = H ·W0/[λ0(Ts − T0)] — the
measureless density of electromagnetic radiation power on the top surface of
plug, B = b·H2/λ0 — the measureless heat exchange coefficient on the lateral
surface with surrounding medium, γ = H · α — the measureless absorption
coefficient of electromagnetic radiation.

In these designations equation (17) becomes the following view:

Φ
∂θ

∂τ
=

∂

∂x

(
Λ
∂θ

∂x

)
+ γQ0e

−Γ = 0. (26)

where

Γ =

z∫

0

αdz′ =

z∫

0

γx′ (27)

The formula (16) also can be written in more comfortable view. Will be:
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θα =
Tα − T0
Ts − T0

, ∆θα =
∆Tα
Ts − T0

,

γ0 = H · α0 , γm = H · αm ,

γ1 = γ0 + k(θα +∆θα) ,

γ2 = γ0 − k(θα −∆θα) , k =
γm − γ0
∆θα

.

Then the formula (16) can be written in view:

γ(θ) =






γ0 at θ ≥ θα +∆θα ,
γ1 − kθ at θα ≤ θ ≤ θα +∆θα ,
γ2 + kθ at θα −∆θα ≤ θ ≤ θα ,
γ0 at θ ≤ θα −∆θα .

(28)

3 The stationary analytical solution

For the steady-state temperature ∂θ/∂t = 0, and the equation (17) becomes
the view:

d

dx

(
Λ
dθ

dx

)
+ γQ0e

−Γ −Bθ = 0, (29)

For our case the values of B>> 1, Q0>> 1, dθ/dx∼ v1, Λ∼ 1B are
characteristic, therefore in the equation (29) the first term is neglected. It
means physically, that the heat transfer due to conductivity is neglected
in comparison with volume heating due to absorption of electromagnetic
radiation and with the heat exchange with surrounding medium. The
equation (29) becomes in this case the view:

γQ0e
−Γ −Bθ = 0. (30)

3.1. The monotone decreasing steady-state temperature field

If initial temperature, as usually, is constant, than the monotone
decreasing steady-state temperature field will set after long-time heating:
the highest temperature will be at top (at x = 0), and the least temperature
will be at bottom (at x = 1).

If the power of source and the other parameters are such, so θ(0) >
θα + ∆θα and θ(1) < θα −∆θα, that one may to eliminate 4 regions in all
range 0≤ x≤ 1:
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1) 0 ≤ x ≤ x1, where θ ≥ θα +∆θα;
2) x1 ≤ x ≤ xα, where θα +∆θα ≥ θ ≥ θα;
3) xα ≤ x ≤ x2, where θα ≥ θ ≥ θα −∆θα;
4) x2 ≤ x ≤ 1, where θ ≤ θα −∆θα.
In the region 1:

θ = γ0 ·
Q0

B
· e−γ0x. (31)

In particular, at x = x1:

θ = θα +∆θα = γ0
Q0

B
e−γ0x1 = γ0

Q1

B
, (32)

where

Q1 = Q0e
−γ0x1 =

B

γ0
(θα +∆θα) . (33)

In the region 2:

γ = γ1 − kθ. (34)

Let it be

Γ1(x) =

x∫

x1

(γ1 − kθ)dx′; (35)

than the equation (30) becomes:

γQ1e
−Γ1(x) −Bθ = 0. (36)

Taken θ from (34) and take account, that according to (35), γ = Γ′
1, one

received differential equation for function Γ1(x):

dΓ1

dx
Q1e

−Γ1(x) − B

k

(
γ1 −

dΓ1

dx

)
= 0. (37)

Taken the integral from x1 to x, one found:

Q1

(
1− e−Γ1(x)

)
+
B

k
Γ1(x) =

B

k
γ1(x− x1), (38)

or, take account (33),

θα +∆θα
γ0

(
1− e−Γ1(x)

)
+

1

k
Γ1(x) =

1

k
γ1(x− x1). (39)
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Equation (38) (or (39)) described fully the function Γ1(x).
The dependence θ(x) can be find from (30) or (34):

θ =
γ1Q1e

−Γ1(x)

B +Q1ke−Γ1(x)
=

γ1(θα +∆θα)e
−Γ1(x)

γ0 + k(θα +∆θα)e−Γ1(x)
. (40)

Taken θ = θα, one find Γ1(xα):

e−Γ1(xα) =
γ0θα

γm(θα +∆θα)
,

Γ1(xα) = ln
γm(θα +∆θα)

γ0θα

(41)

because the point, in which the temperature is q = qα, equals:

xα = x1 +
k

γ1

(
θα +∆θα

γ0
− θα
γm

)
+

1

γ1
ln
γm(θα +∆θα)

γ0θα
. (42)

In the region 3:

θ =
γ2θαe

−Γ2(x)

γm − kθαe−Γ2(x)
, (43)

where

Γ2(x) =

x∫

xα

(γ2 + kθ)dx′. (44)

The function Γ2(x) is directed by formula:

− θα
γm

(
1− e−Γ2(x)

)
+

1

k
Γ2(x) =

γ2
k
(x− xα). (45)

In particular, at x = x2 the temperature is θ = θα −∆θα, and

e−Γ2(x2) =
γm(θα −∆θα)

γ0θα
,

Γ2(x2) = ln
γ0θα

γm(θα +∆θα)
,

(46)

and the coordinate of point x2 equals:

x2 = xα +
k

γ2

(
θα −∆θα

γ0
− θα
γm

)
− 1

γ2
ln
γm(θα −∆θα)

γ0θα
. (47)
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In the region 4:

θ = (θα −∆θα)e
−γ0(x−x2). (48)

3.2. The monotone increasing steady-state temperature field

In temperature range of θα − ∆θα ≤ θ ≤ θα the equation (30) have the
solution, for that the temperature increases with the growth of coordinate
x. That is the top of plug is heated weakly than the bottom in spite of
the top is nearly to the source of radiation. It is possible only for volume
heating at well speed increasing of absorption coefficient with the growth of
the temperature. By that the radiation goes through weakly heating region
almost without absorption and is absorbed strongly in region, that have the
more high temperature.

As it showed by analytic and numerical researches, this solution is
unstable. At the small decreasing of the power the ”overheated“ zone
disappears, and at small increasing of the power that begin to move to
initial of coordinates (”the reverse temperature wave“). In both cases the
stable steady-state solution with increasing temperature sets.

If the power os the source is

Q0 =
B

γ0
(θα −∆θα). (49)

than the temperature on top of the plug equals to θα −∆θα.
If one received on someway on range 0 ≤ x ≤ xα the increasing

temperature, such as θ(xα) = θα, then the equation (30) becomes the view:

θα −∆θα
γ0

dΓ

dx
e−Γ(x) +

1

k

(
γ2 −

dΓ

dx

)
= 0, (50)

where

Γ(x) =

x∫

0

(γ2 + kθ)dx′. (51)

By integration of this equation one finds:

θα −∆θα
γ0

(
1− e−Γ(x)

)
− 1

k
Γ(x) = −γ2

k
x, (52)

and

θ =
γ2(θα −∆θα)e

−Γ(x)

γ0 − k(θα −∆θα)e−Γ(x)
. (53)
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Figure 1: Steady-state temperature fields
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Figure 2: Steady-state temperature fields

For the temperature was be increasing, the derivation dθ/dx must to be
positive:

k(θα −∆θα)e
−Γ > γ0. (54)

In particular, at x = 0 the derivation dθ/dx is:

θ′(0) =
γ20(θα −∆θα)

−γ2
. (55)

i.e. dθ/dx>0 if γ2<0.
On the Fig. 1 are showed three steady-state temperature fields, which (in

dependence on initial conditions) may be received in the same medium at the
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same power of radiation. Each of these fields correspondes to some solution
of equation (30); two from their (curves 1 and 2) correspond to formulae (48)
and (40), and one (curve 3) correspondes to formula (53).

The Fig. 2 showes the results of numerical experiment: the increasing
temperature field turns into ”reverse temperature wave“ after short-times
decreasing of heat exchange coefficient. In finally the corresponding to curve
2 (Fig. 1) field sets.

Conclusions

The efficiency of high-frequency electromagnetic heating depends on the
physical parameters of medium and on frequency and power of radiation.
Using the nonlinear properties of medium, one can to rise substantially the
efficiency of the heating and to receive effects, those are impossible by usual
conditions.
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