

Динамическое запирание обратной водонефтяной эмульсии при радиально-расширяющемся течении в ячейке Хили-Шоу¹

А. А. Рахимов, А. К. Ахметов

Институт механики УНЦ РАН, Уфа

Аннотация. Изучено изменение структуры радиально-расширяющегося течения высококонцентрированной стабилизированной обратной водонефтяной эмульсии в плоском капиллярном канале. Обнаружен эффект динамического запирания, который заключается в том, что несмотря на постоянно действующий перепад давления между центром и внешней образующей ячейки, течение эмульсии со временем замирает. Показаны микропотоки в состоянии «запирания». Испытаны различные методы воздействия на систему в состоянии «запирания». Обнаружено, что движение возобновляется в сильных УЗ полях.

Ключевые слова: динамическое запирание, обратная водонефтяная эмульсия, дисперсная система «жидкость-жидкость», радиально-расширяющееся течение, ячейка Хили-Шоу

На основе ранее проведенных экспериментов обнаружен удивительный эффект динамического запирания течения дисперсной системы «жидкость– жидкость» в осесимметричном и плоском потоках [1]. Он состоит в том, что течение стабилизированной нефтенолом водонефтяной эмульсии в капиллярах разного диаметра и в щелевидной модели (ячейка Хили-Шоу) при постоянном перепаде давления со временем останавливается. При этом течение водонефтяных дисперсий сопровождается значительными изменениями их свойств, структуры и проявлением совершенно неожиданных

 $^{^1}$ Работа выполнена при частичной финансовой поддержке программы фундаментальных исследований ОЭММПУ РАН «Динамика и акустика неоднородных жидкостей газожидкостных систем и суспензий»

Рис. 1. Зависимость касательного напряжения от скорости деформации сдвига

эффектов [2]. Возникает вопрос, как будет изменяться структура течения и расход эмульсии в радиально-расширяющемся потоке со временем.

Для экспериментального изучения радиально-расширяющегося течения была использована стабилизированная нефтенолом водонефтяная эмульсия (состав: минерализованная вода — 73%, эмульгатор нефтенол H3 — 4%, нефть — 20%, 32% водный раствор хлорида кальция — 3%), любезно предоставленная фирмой Химеко ГАНГ.

Стабилизированная эмульсия отличается большой динамической стабильностью [3], и даже имеющиеся капли в процессе измерения вязкости диспергируют в микрокапли [4]. Реологические характеристики эмульсии измерялись на ротационном вискозиметре с системой конус–пластина. Измерения касательного напряжения при постепенном повышении скорости деформации сдвига до определенного значения (прямой ход), а далее понижении (обратный ход) показывают, что по мере измерения эмульсия упрочняется (Рис. 1).

Параметры аппроксимационной зависимости $\tau = \tau_0 + K \dot{\gamma}^n$ (модель Гершеля-Бакли) для водонефтяной эмульсии приведены на графике (Рис. 1), где τ — напряжение сдвига; $\dot{\gamma}$ — скорость деформации сдвига; r — коэффициент корреляции; графики аппроксимировались по методу наименьших квадратов. Процесс упрочнения наиболее ярко проявляется при снятии зависимости касательного напряжения от времени при постоянном значении $\dot{\gamma} = 900 \text{ c}^{-1}$ (Рис. 2), то есть эмульсия обладает свойством реопексии [4]. Следует также отметить, что кривая «упрочнения», как видно на графике (Рис. 2), насыщается через 35 минут.

Радиально-расширяющийся поток был реализован между двумя цилиндрическими плоскопараллельными стеклянными оптическими пластинами с зазором между пластинами 17 или 35 мкм и диаметром 57 мм. В центре одной из них было просверлено отверстие диаметром 2 мм, в которое была вставлена полиэтиленовая трубка с внутренним диаметром 1,43 мм, по ней при постоянном избыточном давлении подавалась эмульсия. На внешней образующей пластин было атмосферное давление. Картина радиально-расширяющегося течения записывалась на цифровую видеокамеру в масштабе модели и микромасштабе через микроскоп Stemi-2000С. Расход измерялся по перемещению мениска в градуированной трубке, по которой поступала эмульсия. Была проведена серия экспериментов с зазором 17 мкм и 35 мкм, при различных перепадах давления от 50 кПа до 300 кПа между входным отверстием и внешней образующей пластин. По показаниям градуированной трубки и по визуальным наблюдениям картины течения в масштабе модели движение эмульсии со временем во всех проведенных экспериментах полностью останавливается в интервале времени от 22 минут до 2,4 часа от начала эксперимента. На Рис. 3 приведен характерный результат, иллюстрирующий изменение расхода при ступенчатом увеличении давления после запирания. Увеличение давления на входе вдвое приводит к возобновлению движения с расходом несколько меньшим начального, и запирание наступает намного раньше. Повторное удвоение давления вновь приводит к возобновлению движения, но уже через 20 минут система вновь переходит в состояние запирания.

По результатам проведенных экспериментальных исследований были выделены основные этапы радиально–расширяющегося течения обратной водонефтяной эмульсии в ячейке Хили-Шоу при постоянном избыточном давлении (Рис. 4):

1. Начальный этап — формирование радиальных трубок тока (Рис. 4, кадр 1);

2. Второй этап — искривление радиальных трубок тока — хаотизация течения, сопровождающаяся уменьшением расхода эмульсии (Рис.4, кадр 2);

3. Третий этап (предшествующий запиранию) — конвульсивный процесс приостановления движения, характеризующийся формированием эквипотенциальных поверхностей (Рис. 4, кадр 3).

Изучение процессов происходящих в ячейке в состоянии запирания с помощью микроскопа (микромасштаб) позволяет обнаружить наличие микропотоков (Рис. 5). Скорость таких микротечений колеблется в пределах 2–5 мкм/с. Особенностью этих течений является то, что микропоток весьма извилист (Рис. 5, кадр 3), то есть движение происходит не в радиальном направлении, как следовало бы ожидать, а по выделившимся каналам, то есть структурированная в ячейке эмульсия препятствует движению вновь поступающей эмульсии.

Для проверки гипотезы о том, что запирание в радиально–расширяющейся ячейке обусловлено процессами у входа подобно суспензии по предложению член-корр. В. П. Казакова был проведен следующий эксперимент: во входное отверстие ячейки (внутри подводящей эмульсию трубки) поместили иголку, которую можно двигать и вращать по всему дну цилиндрического входного отверстия. После наступления состояния запирания

Рис. 2. Зависимость касательного напряжения сдвига от времени при скорости деформации сдвига $\dot{\gamma}=900~{\rm c}^{-1}$

Рис. 3. Зависимость объёма протекшей эмульсии от времени при ступенчатом изменении перепада давления

Рис. 4. Изменение структуры течения в радиально-расширяющемся потоке при постоянно действующем перепаде давления

Рис. 5. Микропотоки в состоянии запирания (под кадрами указано время от перехода системы в состояние запирания)

Рис. 6. Изменение структуры течения после воздействия ультразвуковых полей

Рис. 7. Влияние мощных УЗ полей на эффект динамического запирания в радиальной ячейке

мы вращали и скребли иголкой в цилиндре у входа в ячейку. Это привело к тому, что скорость движения в микромасштабе увеличилась в несколько раз (до 10–15 мкм/с), но через 2–3 минуты оно начало конвульсивно приостанавливаться, и система вновь перешла в первоначальное состояние запирания, причем по градуированной трубке движение не было зафиксировано. При повторном шевелении иголкой на входе в ячейку с системой ничего не происходило, даже в микромасштабе.

Состояние запирания очень устойчиво, в течении нескольких суток микропотоки только уменьшаются и существенно замедляются. Возник вопрос; каким образом можно вывести систему из такого состояния, к примеру, каково будет влияние акустического воздействия? После запирания модель помещалась в воду и подвергалась действию ультразвукового излучателя Ультратон (избыточное давление не отключалось). Никаких изменений при 20 минутном воздействии заметить не удалось. В следующем подобном эксперименте модель находилась в состоянии запирания (при постоянно действующем избыточном давлении 200 кПа) в течение двух суток, после чего помещалась в ультразвуковую ванну УЗВ 3/100 TH со значительно более мощными УЗ полями (мощность генератора 150 \pm 30 Вт, рабочая частота 25–28 кГц) на 2, 5, 10 минут. Структура потока после воздействия мощных УЗ полей (Рис. 6) меняется приблизительно таким же образом, как и при обычном запирании; при повторных воздействиях картина аналогична.

Кривые зависимостей объема протекшей эмульсии приведены на Рис. 7 (в квадратиках указаны номера кадров, приведенные на Рис. 6). Из графиков видно, что увеличение длительности воздействия УЗ полей приводит к увеличению расхода и времени до наступления запирания.

Таким образом, при радиально–расширяющемся течении стабилизированная нефтенолом обратная водонефтяная эмульсия (микрокапли воды в нефти) проявляет эффект динамического запирания, при этом трансформирующаяся в ячейке эмульсия образует застойные зоны, которые препятствуют движению закачиваемой эмульсии по радиальным линиям тока. При моделировании эффекта динамического запирания наряду с процессами, происходящими у входа в капиллярную систему, необходимо учитывать структурные преобразования в капиллярной щели.

Основными этапами радиально–расширяющегося течения обратной водонефтяной дисперсии в ячейке Хили-Шоу при постоянном избыточном давлении являются: формирование радиальных трубок тока, хаотизация течения, образование эквипотенциальных поверхностей.

Действие мощных УЗ полей позволяет в какой-то мере управлять эффектом динамического запирания.

Список литературы

- [1] Ахметов А., Телин А., Глухов В., Мавлетов М., Силин М., Гаевой Е., Магадов Р., Хлобыстов Д., Байкова Е. Особенности течения высококонцентрированных обратных водонефтяных эмульсий в трещинах и пористых средах // Технологии ТЭК. Нефть и капитал. 2003, апрель. С. 54–58.
- [2] Ахметов А. Т., Глухов В. В, Мавлетов М. В. Проблемы моделирования течения инвертных водонефтяных дисперсий в капиллярах // Труды Математического центра имени Н. И. Лобачевского. Т. 27 // Казанское математическое общество. Материалы XVII сессии Международной школы по моделям механики сплошной среды // Казань: Издательство Казанского математического общества. 2004. С. 30–41.
- [3] Ахметов А., Телин А., Корнилов А. Дисперсионные и реологические характеристики обратных водонефтяных эмульсий на основе нефтей приобского и мамонтовского месторождений // Научно-технический вестник. ЮКОС. № 9. 2004. С. 43–50.
- [4] Телин А., Ахметов А., Калимуллина Г. Тестирование обратных водонефтяных эмульсий с анолитом и сеноманской водой в качестве блокирующих жидкостей для глушения скважин // Научно-технический вестник. ЮКОС. № 10. 2004. С. 50–56.