УДК 681.51



# ИССЛЕДОВАНИЕ ГИДРОМЕХАНИЧЕСКОГО ЭЛЕМЕНТА ДОЗИРОВАНИЯ ТОПЛИВА

Е. В. Денисова, Э. Ш. Насибуллаева

Институт механики УНЦ РАН, Уфа

**Аннотация.** Рассматривается методика расчета характеристик элемента дозирования топлива при изменении его конструктивных параметров и физических свойств топлива.

Ключевые слова: гидромеханический элемент, дозирование топлива, сервопоршень

## 1 Введение

Исторически сложилось так, что первые системы автоматического управления воздушно-реактивными двигателями были гидромеханическими. Они появились и совершенствовались совместно с объектами управления двигателями. Достаточно длительный период времени никаких проблем (кроме чисто инженерных) при функционировании систем управления подобного класса не возникало.

Появление новых типов летательных аппаратов и двигателей для них, введение в контуры управления высокоточных бортовых вычислительных комплексов, поставило перед разработчиками систем управления следующую проблему: характеристики управляющей (электронной) и исполнительной (гидромеханической) частей системы должны быть согласованы или хотя бы не противоречить друг другу. При этом в развитии как методов проектирования, так и методов исследования исполнительных гидромеханических механизмов наблюдалось заметное отставание. В свою очередь, проектирование исполнительных гидромеханических устройств имеет целый ряд специфических особенностей. В частности, к ним относятся:





— большое конструктивное разнообразие элементов;

— ограничения на массу и габариты применяемых элементов, что не позволяет использовать стандартные связи между элементами;

— тесная связь между схемой и конструкцией;

— наличие «паразитных» нелинейностей (сухое трение, ограничение на перемещение и тому подобное).

Все вышеперечисленные особенности показывают, что технически реализовать гидромеханический агрегат с заданными характеристиками задача весьма сложная и актуальная.

В настоящей работе проводится исследование основного элемента гидромеханического агрегата дозирования топлива, функционирующего в составе системы автоматического управления частотой вращения газотурбинного двигателя. Элемент является основным, так как именно с его помощью производится стыковка электронной и гидромеханической частей системы управления.

### 2 Постановка задачи и основные уравнения

Рассматривается принципиальная схема основного элемента устройства дозирования топлива — сервопоршня (Рис. 1). Элемент работает следующим образом. От электромагнитного регулятора режима работы двигателя (ЭРД) поступает сигнал на электромагнитный клапан (ЭМК), который открывает или закрывает заслонку, изменяя площадь слива  $f_3$  в левой полости сервопоршня. Открытие или закрытие заслонки осуществляется в режиме широтно-импульсной модуляции. Если заслонка закрывается, то давление  $P_1$  слева от сервопоршня 1 начинает расти, и, с некоторого критического значения, поршень начинает перемещаться вправо в направлении x. Таким образом, между управляющим сигналом u и перемещением сервопоршня x устанавливается связь.

Уравнение, описывающее движение поршня [1]:

$$m\ddot{x} = P_1 F_1 - P_2 F_2 - c_1 x - F_{\rm TP} + R_{\rm mp},\tag{1}$$

где m — масса сервопоршня; x = x(t) — перемещение сервопоршня;  $\ddot{x} = \ddot{x}(t)$  — ускорение перемещения сервопоршня; t — время;  $P_1$  — давление слева от сервопоршня;  $P_2$  — давление справа от сервопоршня;  $F_1$  — площадь сервопоршня;  $F_1$  — площадь сервопоршня слева;  $c_1$  — жесткость пружины;  $R_{\rm np} = {\rm const}$  — сила предварительной затяжки пружины;  $F_{\rm rp}$  — сила трения.

Сила трения  $F_{\rm TP}$  определяется из условия, что в начальный момент t = 0 сервопоршень находится в состоянии покоя в начальном положении  $x = x_0$ , по следующей формуле:

$$F_{\rm rp}^0 = P_1^0 F_1 - P_2^0 F_2 - c_1 x_0 + R_{\rm np}, \qquad (2)$$

где  $P_1^0, P_2^0$  — значения давлений в начальный момент времени.

Уравнение баланса расхода жидкости слева от сервопоршня:

$$a\mu f_1 \sqrt{P_{\text{KIII}} - P_1} = a\mu f_3 \sqrt{P_1 - P_{\text{c.r}}} + F_1 \cdot \dot{x}; \tag{3}$$

уравнение баланса расхода жидкости справа от поршня:

$$a\mu f_2 \sqrt{P_{\rm K\Pi ,II} - P_2} = a\mu f_4 \sqrt{P_2 - P_{\rm c.r}} - F_2 \cdot \dot{x}, \tag{4}$$

где  $a = \sqrt{\frac{2g}{\gamma}}$  — размерный коэффициент, зависящий от удельного веса топлива (жидкости)  $\gamma$ ; g — ускорение свободного падения;  $\mu$  — коэффициент истечения;  $f_1, f_2$  — площадь прохода жидкости на входе (в жиклерах);  $f_3, f_4$  — площадь прохода жидкости на сливе;  $P_{\rm KR}$  = const — давление клапана постоянного давления;  $P_{\rm cn}$  = const — давление слива.

Из уравнений (3), (4) определяется давление справа и слева от поршня по формулам:

$$P_1^0 = \frac{f_1^2 P_{\text{KII},\text{I}} + f_3^2 P_{\text{c},\text{I}}}{f_1^2 + f_3^2}, \quad P_2^0 = \frac{f_2^2 P_{\text{KII},\text{I}} + f_4^2 P_{\text{c},\text{I}}}{f_2^2 + f_4^2}.$$

Из решения уравнения (3) получаем формулу для вычисления давление  $P_1$  в произвольный момент времени t > 0:

$$P_{1} = P_{1}^{0} + \frac{F_{1}\dot{x}\left(-F_{1}\dot{x}(f_{1}^{2} - f_{3}^{2}) \pm 2f_{1}f_{3}\sqrt{(P_{\text{KII,I}} - P_{c,\pi})(f_{1}^{2} + f_{3}^{2})a^{2}\mu^{2} - F_{1}^{2}\dot{x}^{2}}\right)}{(f_{1}^{2} + f_{3}^{2})^{2}a^{2}\mu^{2}}, \quad (5)$$

а из решения уравнения (4) — формулу для вычисления давления  $P_2$ :

$$P_2 = P_2^0 - \frac{F_2 \dot{x} \left( F_2 \dot{x} (f_2^2 - f_4^2) \pm 2f_2 f_4 \sqrt{(P_{\text{KII,I}} - P_{\text{c.s.}}) (f_2^2 + f_4^2) a^2 \mu^2 - F_2^2 \dot{x}^2} \right)}{(f_2^2 + f_4^2)^2 a^2 \mu^2}.$$
 (6)

Выбираются те решения (5), (6), при которых выполняются уравнения баланса (3), (4), соответственно, с наименьшей погрешностью.

Рассмотрим следующие значения физических и геометрических пара-  
метров: 
$$F_1 = F_{\text{пор}} = \pi \left(\frac{0.01}{2}\right)^2 \text{м}^2$$
;  $F_{\text{шт}} = \pi \left(\frac{0.005}{2}\right)^2 \text{м}^2$ ;  $m = 0.05 \text{ кг}$ ;  
 $c_1 = 0.5 \text{ кг/м}^2$ ;  $P_{\text{КПД}} = 15 \text{ атм} = 15.15 \cdot 10^5 \text{ Па}$ ;  $P_{\text{сл}} = 3 \text{ атм} = 3.03 \cdot 10^5 \text{ Па}$ ;  $f_1 = \pi \left(\frac{0.0005}{2}\right)^2 \text{м}^2$ ;  $f_2 = \pi \left(\frac{0.0003}{2}\right)^2 \text{m}^2$ ;  $f_3 = \pi \left(\frac{0.0007}{2}\right)^2 \text{m}^2$ ;  
 $f_4 = \pi \left(\frac{0.0005}{2}\right)^2 \text{M}^2$ ;  $R_{\text{пр}} = 3 \text{ H}$ ;  $\gamma = 780 \text{ кг/m}^3$ ;  $g = 9.8 \text{ м/c}^2$ ;  $\mu = 0.75$ ;  
 $x_0 = 0.01 \text{ м}$ . Зададим частоту изменения управляющего сигнала  $\nu = 40 \text{ Гц}$ ,  
тогда период равен  $T = \frac{1}{2}$  с.

Управляющую функцию, которая определяет процент периода, когда слив закрыт, и является входным параметром, определяется формулой

$$u = \frac{T-\tau}{T} 100\% ,$$

тогда значение  $\tau$  (часть периода, когда слив закрыт) равно  $\tau = T\left(1 - \frac{u}{100}\right)$ . Таким образом,  $f_3$  заменяется на  $f_3^*$  по формуле:

$$f_3^* = \begin{cases} 0, & kT \le t \le kT + \tau, \\ f_3, & kT + \tau \le t \le (k+1)T, \end{cases} \quad k = 0, 1, 2, \dots$$

После обезразмеривания системы уравнений (1)–(2), (5), (6) получим следующую систему уравнений:

$$\begin{split} \ddot{\tilde{x}} &= \tilde{P}_{1} - \alpha \beta \tilde{P}_{2} - \tilde{c}_{1}\tilde{x} - \tilde{F}_{rp} + \tilde{R}_{np}, \\ \tilde{F}_{rp} &= 1 - \alpha \beta - \tilde{c}_{1} + \tilde{R}_{np}, \\ \tilde{P}_{1} &= 1 + \frac{\dot{\tilde{x}} \left( -\dot{\tilde{x}} (\tilde{f}_{1}^{2} - \tilde{f}_{3}^{*2}) \pm 2\tilde{f}_{1}\tilde{f}_{3}^{*} \sqrt{(\tilde{P}_{\text{KII,I}} - \tilde{P}_{c,r})(\tilde{f}_{1}^{2} + \tilde{f}_{3}^{*2})\tilde{a}^{2}\mu^{2} - \dot{\tilde{x}}^{2}} \right)}{(\tilde{f}_{1}^{2} + \tilde{f}_{3}^{*2})^{2}\tilde{a}^{2}\mu^{2}}, \quad (7)\\ \tilde{P}_{2} &= 1 - \frac{\dot{\tilde{x}} \left( \dot{\tilde{x}} (\tilde{f}_{2}^{2} - \tilde{f}_{4}^{2}) \pm 2\tilde{f}_{2}\tilde{f}_{4} \sqrt{(\tilde{P}_{\text{KII,I}} - \tilde{P}_{c,r})(\tilde{f}_{2}^{2} + \tilde{f}_{4}^{2})\tilde{a}^{2}\mu^{2} - \dot{\tilde{x}}^{2}} \right)}{\alpha (\tilde{f}_{2}^{2} + \tilde{f}_{4}^{2})^{2}\tilde{a}^{2}\mu^{2}}, \end{split}$$

с начальными условиями

$$\tilde{x}(0) = 1, \quad \dot{\tilde{x}}(0) = 0.$$
(8)



Рис. 2. Отклонение сервопоршня от начального положения  $\Delta x/x_0$  в зависимости от управляющего сигнала u для различных значений жесткости пружины  $c_1$ :  $1 - c_1 = 0.05 \text{ кг/m}^2$ ,  $2 - c_1 = 0.1 \text{ кг/m}^2$ ,  $3 - c_1 = 0.5 \text{ кг/m}^2$ ,  $4 - c_1 = 1 \text{ кг/m}^2$ 

Здесь введены следующие безразмерные величины: 
$$\theta = \frac{t}{t_0}, t_0 = \sqrt{\frac{x_0 m}{F_1 P_1^0}},$$
  
 $\tilde{x} = \frac{x}{x_0}, \tilde{P}_1 = \frac{P_1}{P_1^0}, \tilde{P}_2 = \frac{P_2}{P_2^0}, \tilde{c}_1 = \frac{c_1 t_0^2}{m}, \tilde{R}_{np} = \frac{R_{np} t_0^2}{m x_0}, \tilde{F}_{np} = \frac{F_{np} t_0^2}{m x_0}, \alpha = \frac{P_2^0}{P_1^0},$   
 $\beta = \frac{F_2}{F_1}, \tilde{P}_{\text{КПД}} = \frac{P_{\text{КПД}}}{P_1^0}, \tilde{P}_{cn} = \frac{P_{cn}}{P_1^0}, \tilde{f}_1 = \frac{f_1}{F_1}, \tilde{f}_3 = \frac{f_3}{F_1}, \tilde{f}_2 = \frac{f_2}{F_2}, \tilde{f}_4 = \frac{f_4}{F_2},$   
 $\tilde{a}^2 = \frac{a^2 t_0^2 P_1^0}{x_0^2}.$ 

### 3 Анализ перемещения сервопоршня в зависимости от управляющего сигнала

Система уравнений (7), (8) решалась численно с помощью метода Рунге– Кутта по формулам Дормана-Принса [2]. Рассматривалось отклонение поршня от своего начального положения за 10 периодов колебаний *T*.

На Рис. 2 представлено отклонение сервопоршня от начального положения  $\Delta x/x_0$  в зависимости от управляющего сигнала *u* при различных значениях жесткости пружины  $c_1$ . При уменьшении значения  $c_1$  кривая отклонения становится более гладкой. Было также получено, что удельный вес топлива  $\gamma$  мало влияет на отклонение сервопоршня от начального положения.

На Рис. 3 представлено отклонение сервопоршня от начального положения  $\Delta x/x_0$  в зависимости от управляющего сигнала *u* при одновременном изменении величин жиклеров  $f_1$ ,  $f_2$ ,  $f_3$ ,  $f_4$ , а также экспериментальные зависимости, полученные при исследовании данного элемента на



Рис. 3. Отклонение сервопоршня от начального положения  $\Delta x/x_0$  в зависимости от управляющего сигнала u для различных значений жиклеров, полученное при численных расчетах (1 — прямая, 2 — штрихпунктирная линии) и экспериментально (1 — белые, 2 — черные круги)

полунатурном стенде.

#### 4 Выводы

Проведенные расчеты показали следующие результаты. Статическая характеристика (перемещение от управляющего сигнала) расслаивается при изменении как конструктивных факторов — жесткости пружины и пропускного сечения жиклеров, так и физических свойств топлива — температуры и плотности. При этом наиболее значительное расслоение наблюдается при изменении площади жиклеров (Рис. 3). Подобное расслоение (так называемая «метелка») недопустимо при функционировании системы управления, так как может привести к потере устойчивости.

#### Список литературы

- Кусимов С. Т., Ильясов Б. Г., Васильев В. И. и др. Проблемы проектирования и развития систем автоматического управления и контроля ГТД. М.: Машиностроение, 1999. 609 с.
- [2] Хайрер Э., Нёрсетт С., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Нежесткие задачи. М.: Мир, 1990. 512 с.