

Влияние температуры на ориентационную динамику осциллирующего пуазейлевского течения нематического жидкого кристалла

Насибуллаев И.Ш., Камалетдинова Ю.Р.

Уфимский государственный авиационный технический университет, Уфа

Аннотация. В работе изучается влияние температуры и характера поверхностного сцепления на ориентационное поведение осциллирующего пуазейлевского течения нематического жидкого кристалла (НЖК) в плоском канале. Равновесное распределение длинных осей молекул НЖК лежит в плоскости течения. Исследуется изменение ориентации молекул НЖК и вызываемые этим обратные течения с помощью малоамплитудного разложения.

1. Введение

Термотропные жидкие кристаллы представляют собой состояние вещества, промежуточное на температурной шкале между твердым телом и жидкостью (мезофаза). Они совмещают свойства пограничных фаз: текут как жидкости, но имеют анизотропию ряда физических свойств как твердые тела. Совмещение этих свойств приводит к ряду интересных явлений, в том числе и при наличии границы между жидким кристаллом и твердой поверхностью.

Влияние поверхностности на ориентационную динамику и течение нематического жидкого кристалла (НЖК) [1] может быть значительным, особенно в тонких (~ 10 ÷ 100 мкм), ограниченных твердой поверхностью, пленках НЖК [2]. С другой стороны,

Рис. 1. Геометрия НЖК-ячейки

ориентационные свойства НЖК зависят от материальных параметров (коэффициенты вязкости Лесли и коэффициенты упругости Франка), которые, в свою очередь, зависят от температуры [3, 4]. Однако, это влияние до сих пор остается малоизученным.

2. Математическая модель

Рассматривается слой НЖК толщиной d, заключенный между двумя бесконечными параллельными пластинами, обеспечивающими нежесткое сцепление. Осциллирующий пуазейлевский поток создается периодически изменяющимся во времени, приложенным вдоль оси x, перепадом давления $\Delta P = P_2 - P_1$ (рис. 1). В отсутствие потока при слабом сцеплении директор (средняя локальная ориентация молекул) ориентирован гомеотропно (т.е. перпендикулярно подложкам вдоль оси z).

Рассматривается ориентация директора в плоскости течения

$$\vec{n} = \{n_x(z,t), 0, n_z(x,t)\}.$$

Это условие выполняется для малых скоростей течения, когда не появляются неустойчивости, сопровождающиеся выходом директора из плоскости течения [5]. Кроме того, длина вектора \vec{n} равна единице и направления \vec{n} и $-\vec{n}$ эквивалентны:

$$\vec{n}^2 = 1. \tag{1}$$

Для несжимаемой жидкости скорость имеет только одну отличную от нуля компоненту — $v_x(z,t)$. Система уравнений, описывающих рассматриваемую задачу, состоит из условия нормировки (1), уравнения Навье–Стокса и уравнения баланса моментов сил, действующих на директор:

$$\rho v_{x,t} = -p_{,x} + \left[\alpha_2 n_z n_{x,t} + \alpha_3 n_x n_{z,t} + \frac{1}{2} \left(\alpha_4 + (\alpha_5 - \alpha_2) n_z^2 + (\alpha_3 + \alpha_6 + 2\alpha_1 n_z^2) n_x^2 \right) v_{x,z} \right]_{,z}, \quad (2)$$

$$K_{33} n_z n_{x,zz} - K_{11} n_x n_{z,zz} = n_z (\gamma_1 n_{x,t} - \alpha_2 n_z v_{x,z}) - \frac{-n_x (\gamma_1 n_{z,t} + \alpha_3 n_x v_{x,z}),$$

где через $f_{,x} = \partial f / \partial x$ — обозначены частные производные; ρ — плотность НЖК; α_i — коэффициенты вязкости Лесли; K_{ii} — коэффициенты упругости Франка, коэффициент вращательной вязкости $\gamma_1 = \alpha_3 - \alpha_2$.

Граничные условия для компоненты скорост
и v_{x} определяются из условия прилипания

$$v_x(z = \pm d/2) = 0.$$
 (3)

Граничные условия для ориентации директора задаются уравнением [6]:

$$\pm \frac{\partial F}{\partial n_{i,z}} + \frac{\partial F_s}{\partial n_i} + \eta_s \frac{\partial n_i}{\partial t} = 0, \qquad (4)$$

где знаки «±» соответствуют границе $z=\pm d/2;~F-$ объемная плотность свободной энергии; F_s- поверхностная плотность свободной энергии.

Перейдем к безразмерным величинам. В качестве характерного размера выберем толщины слоя НЖК-ячейки d, в качестве характерного времени — обратную величину частоты потока $1/\omega$ ($\omega = 2\pi f$). Угол отклонения ориентации директора от оси Oz обозначим через θ . Тогда компоненты директора примут вид $\vec{n} = \{\cos \theta, 0, \sin \theta\}$ и условие нормировки (1) выполняется автоматически. Для малых отклонений директора θ_1 от состояния равновесия $\theta = \pi/2$ запишем разложение

$$\theta(z,t) = \theta_0(z,t) + \theta_1(z,t).$$

Линеаризованные относительно малых отклонений директора θ_1 уравнения (2) в безразмерном виде примут вид:

$$Rv_{x,t} = -a_p \cos t - (1 - \lambda)K_0\theta_{1,tz} + Q_0 v_{x,zz},$$

$$\theta_{1,t} - K_0 v_{x,z} = \varepsilon P_0 \theta_{1,zz},$$
(5)

где

$$K_0 = K(\theta_0), P_0 = P(\theta_0), Q_0 = Q(\theta_0), R = \tau_v \omega, \tau_v = \frac{\rho d^2}{-\alpha_2},$$

$$K(\theta) = \frac{\lambda \cos^2 \theta - \sin^2 \theta}{1 - \lambda}, P(\theta) = \cos^2 \theta + K_{31} \sin^2 \theta, K_{31} = \frac{K_{33}}{K_{11}},$$

$$Q(\theta) = \frac{\alpha_4 + (\alpha_5 - \alpha_2) \sin^2 \theta + (\alpha_3 + \alpha_6 + 2\alpha_1 \sin^2 \theta) \cos^2 \theta}{2(-\alpha_2)},$$

$$\lambda = \frac{\alpha_3}{\alpha_2}, a_p = \frac{\Delta P}{L} \frac{d}{(-\alpha_2)\omega}, \varepsilon = \frac{1}{\tau_d \omega}, \tau_d = \frac{\gamma_1 d^2}{K_{11}}, \gamma_1 = \alpha_3 - \alpha_2,$$

где a_p — безразмерная амплитуда пуазейлевского потока; $\Delta P = P_2 - P_1$ — перепад давления; L — длина НЖК-ячейки. Величины τ_d и τ_v представляют собой характерные времена релаксации ориентации директора и скорости, соответственно. Инерциальное слагаемое скорости (правая часть первого уравнения (5)) содержит множитель R — число Рейнольдса, которое, в рассматриваемой задаче ($\rho \approx 10^3 \text{ кг/м}^3$, d = 20 мкм, $-\alpha_2 \sim 0, 1 \text{ Па·сек}$) является малой величиной для частот потока $f \ll 10^4 \text{ Гц}$ и, в дальнейших расчетах, этим слагаемым можно пренебречь.

Поверхностную плотность свободной энергии запишем в виде потенциала Рапини [7] $F_s = (W/2)\theta_1^2$, где W — поверхностная энергия. С учетом этого граничные условия (3), (4) в безразмерном виде примут вид:

$$v_x(z = \pm 1/2) = 0, \quad \pm \theta_{1,z} - E\theta_1 - G\theta_{1,t} = 0,$$
 (6)

где
$$E = \frac{Wd}{P_0 K_{11}}, \quad G = \frac{\eta_s \omega d}{P_0 K_{11}}$$

— безразмерные коэффициенты, определяющие влияние поверхностной энергии W и поверхностной вязкости $\eta_s = \gamma_1 \ell_{\gamma_1}$, соответственно. Величина ℓ_{γ_1} — ширина приграничного слоя, в котором заметно влияние поверхностной вязкости.

Так как уравнения (5) линейны относительно θ_1 и v_x , то решение ищем в виде линейного отклика:

$$\theta_1(z,t) = a_p[T_1(z)\cos t + T_2\sin t],$$

$$v(z,t) = a_p[U_1(z)\cos t + U_2\sin t].$$
(7)

С учетом граничных условий (6) были найдены функции $T_1(z), T_2(z), U_1(z)$ и $U_2(z)$:

$$\begin{split} T_1(z) &= -K_0 M_0 \frac{c_1 f_1(z) - c_2 f_2(z)}{c_1^2 + c_2^2}, \\ T_2(z) &= -K_0 M_0 \left(\frac{c_2 f_1(z) + c_1 f_2(z)}{c_1^2 + c_2^2} - 2z \right), \\ U_1(z) &= -M_0 \left(\frac{1}{4} - z^2 + \frac{(1 - \lambda) K_0^2}{2Q_0 k} \frac{c_1 f_3(z) - c_2 f_4(z)}{c_1^2 + c_2^2} \right), \\ U_2(z) &= -M_0 \left(\frac{(1 - \lambda) K_0^2}{2Q_0 k} \frac{c_2 f_3(z) + c_1 f_4(z)}{c_1^2 + c_2^2} \right), \end{split}$$

где

$$k = \sqrt{\frac{Q_0 - (1 - \lambda)K_0^2}{2\varepsilon Q_0 P_0}}, \quad M_0 = \frac{1}{2(Q_0 - (1 - \lambda)K_0^2)},$$

$$f_1(z) = \operatorname{ch}(kz)\sin(kz) + \frac{2E}{E^2 + G^2}\operatorname{ch}(kz)\sin(kz) - \frac{2G}{E^2 + G^2}\operatorname{sh}(kz)\cos(kz),$$

$$f_2(z) = \operatorname{sh}(kz)\cos(kz) + \frac{2E}{E^2 + G^2}\operatorname{sh}(kz)\cos(kz) + \frac{2G}{E^2 + G^2}\operatorname{ch}(kz)\sin(kz),$$

$$f_3(z) = A_1(z)\left(1 + 2\frac{E - G}{E^2 + G^2}\right) + A_2(z)\left(1 + 2\frac{E + G}{E^2 + G^2}\right),$$

$$\begin{split} f_4(z) &= A_1(z) \left(1 + 2 \frac{E+G}{E^2+G^2} \right) - A_2(z) \left(1 + 2 \frac{E-G}{E^2+G^2} \right), \\ A_1(z) &= \operatorname{ch}(kz) \cos(kz) - \operatorname{ch}(k/2) \cos(k/2), \\ A_2(z) &= \operatorname{sh}(kz) \sin(kz) - \operatorname{sh}(k/2) \sin(k/2), \\ c_1 &= \operatorname{sh}(k/2) \cos(k/2) + \frac{kE}{E^2+G^2} \Big(\operatorname{ch}(k/2) \cos(k/2) - \operatorname{sh}(k/2) \sin(k/2) \Big) + \\ &+ \frac{kE}{E^2+G^2} \Big(\operatorname{ch}(k/2) \cos(k/2) + \operatorname{sh}(k/2) \sin(k/2) \Big), \\ c_2 &= \operatorname{ch}(k/2) \sin(k/2) + \frac{kE}{E^2+G^2} \Big(\operatorname{ch}(k/2) \cos(k/2) + \operatorname{sh}(k/2) \sin(k/2) \Big) - \\ &- \frac{kE}{E^2+G^2} \Big(\operatorname{ch}(k/2) \cos(k/2) + \operatorname{sh}(k/2) \sin(k/2) \Big). \end{split}$$

Для расчетов использовались следующие параметры: толщина слоя d = 20 мкм, частота потока $f = 0, 5 \div 5$ Гц, плотность поверхностной энергии $W = 10^{-6}$ Дж/м², материальные параметры НЖК МББА [3, 4] для всей температурной области существования мезофазы. На границе рассматривается гомеотропное сцепление $\theta_0 = \pi/2$.

Результаты расчетов профилей для компонент директора $T_1(z)$, $T_2(z)$ и скорости $U_1(z)$, $U_2(z)$ для различных температур $T = 20...44^{\circ}$ С представлены на рис. 2–4. На рис. 2 профили построены для значения длины поверхностной вязкости $\ell_{\gamma_1} = 10^{-5}$ м, что соответствует жесткому сцеплению молекул НЖК с подложкой. На границе отклонения ориентации директора равны нулю, т.е. ориентация молекул НЖК остается гомеотропной.

Отметим, что с ослаблением поверхностного сцепления (уменьшением ℓ_{γ_1}), сдвиг фазы (отношение между максимумами отклонений между компонентами $T_1(z)$ и $T_2(z)$) уменьшается. Это объясняется тем, что при слабом сцеплении молекул НЖК с подложкой влияние поверхностной вязкости проявляется в меньшем приграничном слое (пирина слоя порядка ℓ_{γ_1}) и требуется меньше энергии для изменения ориентации директора.

Рис. 2. Профили $T_1(z)$, $T_2(z)$ и $U_1(z)$, $U_2(z)$ для различных температур T. f = 0,5 Гц; $W = 10^{-6} \text{ Дж/м}^2$; $\ell_{\gamma_1} = 10^{-5} \text{ м}$

Рис. 3. Профили $T_1(z),~T_2(z)$ и $U_1(z),~U_2(z)$ для различных температурT.~f=0,5Гц; $W=10^{-6}~\rm Дж/m^2;~\ell_{\gamma_1}=10^{-6}~\rm M$

Рис. 4. Профили $T_1(z)$, $T_2(z)$ и $U_1(z)$, $U_2(z)$ для различных температур T. f = 0,5 Гц; $W = 10^{-6} \text{ Дж/м}^2$; $\ell_{\gamma_1} = 10^{-7} \text{ м}$

Рис. 5. Профили $T_1(z)$, $T_2(z)$ и $U_1(z)$, $U_2(z)$ для различных температур T.~f=5 Гц; $W=10^{-6}~$ Дж/м 2 ; $\ell_{\gamma_1}=10^{-6}~$ м

С увеличением частоты потока (скорости течения) увеличивается амплитуда отклонения директора (из-за связи ориентации молекул НЖК с их скоростью) и увеличивается сдвиг фазы осцилляций (изменение ориентации молекул НЖК отстает от изменения скорости течения). Это видно из сравнения рис. 3 (f = 0, 5 Гц) и 5 (f = 5 Гц).

С ростом температуры уменьшается сдвиг фазы осцилляций ориентации директора. Это объясняется зависимостью величины характерного времени релаксации директора $\tau_d = \gamma_1 d^2/K_{11}$ от температуры (через вязкости Лесли α_2 и α_3 входящие в γ_1 и коэффициент упругости K_{11}) — с ростом температуры τ_d уменьшается и молекулы при том же ориентационном искажении быстрее релаксируют к равновесной конфигурации.

Скорость также испытывает сильное влияние температуры. Это связано с двумя факторами: амплитуда скорости обратно пропорциональна эффективной вязкости НЖК Q_0 , а значит чувствительна к изменению коэффициентов вязкости Лесли при изменении температуры; скорость связана с полем директора. Отметим, что первый фактор оказывает наибольшее влияние, т.к. входит как амплитуда при параболическом профиле скорости (слагаемые в $U_2(z)$) в приближении изотропной жидкости с вязкостью Q_0 . Второй фактор может повлиять на форму профиля скорости, т.к. является поправкой, зависящей от профиля директора (компонента $U_1(z)$ без параболических слагаемых и компонента $U_2(z)$). Например, при жестком сцеплении ориентация директора вблизи границы резко меняется и это приводит к искажению формы профиля скорости и образованию пограничного слоя (от границы до первой точки перегиба).

Отметим два важных момента относительно используемой математической модели. Во-первых, уравнения (5) и решения (7) соответствуют и равновесной планарной (т.е. вдоль оси Ox) ориентации директора на границе, если во всех коэффициентах, зависящих от θ_0 подставить значение $\theta_0 = 0$. Во-вторых, мы использовали малоамплитудное разложение только для директора. Так как коэффициенты при скорости зависят от θ квадратично, и

при линеаризации по θ_1 обращаются в константы, линеаризованные уравнения становятся линейными и относительно скорости автоматически.

3. Заключение

В работе было изучено влияние температуры на ориентационную динамику НЖК в осциллирующем пуазейлевском потоке со слабым поверхностным сцеплением. Было получено, что влияние температуры значительно как на величину отклонения ориентации директора от начальной ориентации, так и на положение максимума отклонения директора внутри слоя и на сдвиг по фазе относительно внешнего воздействия. Было найдено, что влияние температуры значительно и на величину скорости течения и форму профиля скорости (наличие или отсутствие приграничного слоя).

Список литературы

- [1] де Жен П. Физика жидких кристаллов. М.: Мир, 1977. 400 с.
- [2] Насибуллаев И. Ш., Крехов А. П. Поведение нематического жидкого кристалла в осциллирующем потоке при слабом поверхностном сцеплении // Кристаллография. Том. 46, № 3. 2001. С. 540–548.
- [3] Wang H. Wu Th. X. Gauza S. et al. A method to estimate the Leslie coefficients of liquid crystals based on MBBA data // Liquid Crystals. Vol. 33, № 1. 2006. C. 91–98.
- [4] Leenhouts F. Dekker A. J. Elastic constants of nematic liquid crystalline Schiff's bases // J. Chem. Phys. Vol. 74, № 3. 1981. C. 1956– 1965.
- [5] Pasechnik S. V., Shmeliova D. V., Tsvetkov V. A., Krekhov A. P., Nasibullayev I. Sh. Orientational dynamics in nematic liquid crystal under decay poiseuille flow // Mol. Cryst. Liq. Cryst. V. 409. 2001. Pp. 467–474.
- [6] Kedney P. J., Leslie F. M. Switching in a simple bistable nematic cell // Liq. Cryst. V. 24. I. 9. 1998. Pp. 613–618.
- [7] Rapini A., Papoular M. Distorsion d'une lamelle nématique sous champ magnétique conditions d'ancrage aux parois // Liq. Cryst. V. 24. I. 9. 1998. Pp. 613–618.