

Напряжения и деформации в стержне при действии на торце динамической нагрузки

Якупов Р. Г.

Институт механики УНЦ РАН, Уфа

Аннотация. Рассмотрены напряжения и деформации полубесконечного стержня, находящегося в упругой среде, при действии на торце динамической нагрузки. С использованием преобразования Лапласа по времени решена система двух дифференциальных уравнений движения теории балок Тимошенко. Полученные интегралы определены численно. Приведены графики изменения прогиба и изгибающего момента по продольной координате.

1. Постановка задачи

Волновые процессы в полубесконечном изолированном стержне, на торце которого приложены динамические нагрузки, рассмотрены в работах [1, 2]. В данной работе проанализированы напряжения и деформации в полубесконечном стержне, находящемся в упругой среде, при внезапном приложении на торце динамических сил и кинематических факторов. Стержень является моделью магистрального трубопровода, находящегося в грунте. Грунт, окружающий трубопровод, моделируем основанием Винклера и принимаем, что сила сопротивления грунта пропорциональна прогибу

$$p_* = \alpha W,$$

где α — коэффициент основания; W — прогиб стержня. Коэффициент α для грунтов находим по формуле [3]

$$\alpha = 0,12E_* \left(b/l_0 \right)^{1/2} / \left(1 - \mu_*^2 \right).$$

Здесь E_* , μ_* — модуль упругости и коэффициент Пуассона грунта; b и l_0 — ширина поперечного сечения и единичная длина стержня. В случае стержня круглого поперечного сечения b = d(d — диаметр стержня).

Поместим начало координат в начале стержня, направив ось x вдоль его оси, оси y и z — по горизонтали и вертикали соответственно. Используем безразмерные величины

$$\xi = x/r, \quad w = W/r, \quad \tau = c_1 t/r, \quad m = Mr/EJ_u, \quad r^2 = J_u/F$$

и уравнения движения записываем с учетом деформации сдвига и инерции вращения в перемещениях [4]:

$$\frac{\partial^2 w}{\partial \xi^2} - \frac{\partial \theta}{\partial \xi} - \gamma \frac{\partial^2 w}{\partial \tau^2} - \zeta w = 0, \quad \frac{\partial w}{\partial \xi} - \theta + \gamma \left(\frac{\partial^2 \theta}{\partial \xi^2} - \frac{\partial^2 \theta}{\partial \tau^2}\right) = 0.$$
(1)

Здесь $\gamma = c_1^2/c_2^2$; $\zeta = r^2 \alpha / \rho F c_2^2$; θ — угол поворота, вызванный изгибающим моментом; τ — время; $c_1^2 = E/\rho$; $c_2^2 = k'G/\rho$; c_1, c_2 — скорости распространения продольной и поперечной волн; E, G и ρ — модуль упругости, модуль сдвига и плотность материала стержня; F, J_u — площадь и осевой момент инерции поперечного сечения; k' — коэффициент формы поперечного сечения стержня (для прямоугольного сечения k' = 1, 2, для круглого сечения k' = 1, 1).

2. Метод решения

К системе (1) применим преобразование Лапласа по времени:

$$\int_{0}^{\infty} e^{-s\tau} f(\tau) d\tau = F(s), \ \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} F(s) e^{\tau s} ds = \begin{cases} f(\tau) \text{ при } \tau > 0, \\ 0 \text{ при } \tau < 0. \end{cases}$$

В результате система (1) принимает вид:

$$\frac{d^2\bar{w}}{d\xi^2} - \frac{d\bar{\theta}}{d\xi} - \left(\gamma s^2 + \zeta\right)\bar{w} = 0, \quad \frac{d\bar{w}}{d\xi} + \gamma \frac{d^2\bar{\theta}}{d\xi^2} - \left(\gamma s^2 + 1\right)\bar{\theta} = 0.$$
(2)

где *s* — параметр преобразования.

Исключив $\bar{\theta}$ из системы (2), находим:

$$\frac{d^4\bar{w}}{d\xi^4} - \left(\gamma s^2 + s^2 + \zeta\right) \frac{d^2\bar{w}}{d\xi^2} + \left(\gamma s^2 + 1\right) \left(s^2 + \frac{\zeta}{\gamma}\right) \bar{w} = 0,$$

$$\bar{\theta} = \frac{\gamma}{(\gamma s^2 + 1)} \left[\frac{d^3\bar{w}}{d\xi^3} - \left(\gamma s^2 + \zeta - \frac{1}{\gamma}\right) \frac{d\bar{w}}{d\xi}\right].$$
(3)

Решение системы (3) имеет вид:

$$\bar{w} = A_1 e^{-\lambda_1 \xi} + A_2 e^{-\lambda_2 \xi};$$

$$\bar{\theta} = \left(\lambda_1^2 - \gamma s^2 - \zeta\right) A_1 e^{-\lambda_1 \xi} / \left(-\lambda_1\right) + \left(\lambda_2^2 - \gamma s^2 - \zeta\right) A_2 e^{-\lambda_2 \xi} / \left(-\lambda_2\right),$$

где A_1, A_2 — постоянные интегрирования первого уравнения (3); $\lambda_{1,2}$ — два (из четырех) корня характеристического уравнения

$$\lambda^4 - \left[(\gamma + 1)s^2 + \zeta \right] \lambda^2 + \left(\gamma s^2 + \zeta \right) \left(s^2 + \frac{1}{\gamma} \right) = 0,$$

удовлетворяющие условию затухания \bar{w} и $\bar{\theta}$ на бесконечности. Представим их в виде

$$\lambda_{1,2}^2 = \left[(\gamma + 1)s^2 + \zeta \right] / 2 \pm (f/a),$$

где $f = \sqrt{(s^2 - a_1^2)(s^2 - a_2^2)}, \quad a = 2/(\gamma - 1), \quad a_{1,2}^2 = a \times \times \left[(a - \zeta) \pm a(1 - (\gamma - 1)\zeta/\gamma)^{\frac{1}{2}}\right]/2.$ Ниже постоянные $A_{1,2}$ определяем при различных вариантах закрепления начального сечения стержня и действия динамических силовых и кинематических факторов.

Вариант 1. К начальному сечению стержня мгновенно прикладывается изгибающий момент и затем остается постоянным

$$M(t) = M_0 H(t),$$

где H(t) - функция Хевисайда

$$H(t) = \begin{cases} 1, & t > 0, \\ 0, & t < 0, \end{cases}$$

прогиб равен нулю.

Вариант 2. К начальному сечению стержня мгновенно прикладывается поперечная сила, затем остается постоянной, $Q = Q_0 H(t)$, угол поворота от изгиба равен нулю. Вариант 3. Торцевое сечение перемещается в вертикальном направлении со скоростью V_0 до момента времени t_0 , затем перемещение остается постоянным:

$$W = V_0 t, \quad 0 \le t \le t_0;$$
$$W = V_0 t_0, \quad t \ge t_0,$$

изгибающий момент равен нулю.

Вариант 4. Угол поворота торцевого сечения линейно возрастает до времени t_0 , затем остается постоянным:

$$\theta = \Omega_0 t, \quad 0 \le t \le t_0;$$

$$\theta = \Omega_0 t_0, \quad t \ge t_0,$$

угол сдвига равен нулю.

Поперечная сила, изгибающий момент и угол сдвига определяются по формулам:

$$Q = k'GF(\partial W/\partial x - \theta); \quad M = EJ_u(\partial \theta/\partial x); \quad \beta_* = (\partial \theta/\partial x) - \theta.$$

Математическая форма записи приведенных граничных условий, выраженные через оригиналы и изображения перемещений, содержится в табл. 1, где использованы обозначения: $q_0 = Q_0/k'GF$; $m_0 = M_0r/EJ_u$; $v_0 = V_0/c_1$; $\omega_0 = \Omega_0r/c_1$; θ' — производное θ по ξ .

Приводим выражения постоянных интегрирования, изображений прогиба и изгибающего момента.

		Таблица 1				
Варианты	Граничны	Граничные условия				
	Оригинал	Изображение				
1	$\theta' = m_0 H(\tau)$	$ heta'=m_0/s$				
	w = 0	$\bar{w} = 0$				
2	$\beta_* = q_0 H(\tau)$	$\beta_* = q_0/s$				
	$\theta = 0$	$\bar{\theta} = 0$				
3	$w = v_0 \tau$	$\bar{\theta} = \frac{w_0}{e^2} \left[1 - e^{-\tau_0 s} \right]$				
	$\theta' = 0$	${}^{s}\bar{\theta}'=0$				
4	$\theta = \omega_0 \tau$	$\bar{w} = \frac{v_0}{e^2} \left[1 - e^{-\tau_0 s} \right]$				
	$\beta_* = 0$	$\vec{\beta_*} = 0$				

Вариант 1.

$$A_{1} = m_{0}a/2fs; \quad A_{2} = -m_{0}a/2fs;$$

$$\bar{w} = m_{0}a\left(e^{-\lambda_{1}\xi} - e^{-\lambda_{2}\xi}\right)/2fs;$$

$$\bar{m} = m_{0}\left(\Delta_{1}e^{-\lambda_{1}\xi} - \Delta_{2}e^{-\lambda_{2}\xi}\right)/2s.$$
(4)

Вариант 2.

$$A_{1} = -q_{0}\lambda_{1}\Delta_{2}/2s\left(\gamma s^{2}+\zeta\right); A_{2} = -q_{0}\lambda_{2}\Delta_{1}/2s\left(\gamma s^{2}+\zeta\right);$$

$$\bar{w} = -q_{0}\left(\lambda_{1}\Delta_{2}e^{-\lambda_{1}\xi}-\lambda_{2}\Delta_{1}e^{-\lambda_{2}\xi}\right)/2s\left(\gamma s^{2}+\zeta\right); \qquad (5)$$

$$\bar{m} = q_{0}a\left(\lambda_{1}e^{-\lambda_{1}\xi}-\lambda_{2}e^{-\lambda_{2}\xi}\right)/2\gamma fs.$$

Вариант 3.

$$A_1 = v_0 D\Delta_2/2s; \quad A_2 = v_0 D\Delta_1/2s;$$
$$\bar{w} = v_0 D\left(\Delta_2 e^{-\lambda_1 \xi} - \Delta_1 e^{-\lambda_2 \xi}\right)/2s;$$
$$\bar{m} = -v_0 a D\left(\gamma s^2 + \zeta\right) \left(e^{-\lambda_1 \xi} - e^{-\lambda_2 \xi}\right)/2\gamma fs.$$

Вариант 4.

$$A_{1} = -w_{0}a\lambda_{1}D/2fs; \quad A_{2} = w_{0}a\lambda_{2}D/2fs;$$

$$\bar{w} = -w_{0}aD\left(\lambda_{1}e^{-\lambda_{1}\xi} - \lambda_{2}e^{-\lambda_{2}\xi}\right)/2fs;$$

$$\bar{m} = -w_{0}D\left(\lambda_{1}\Delta_{1}e^{-\lambda_{1}\xi} + \lambda_{2}\Delta_{2}e^{-\lambda_{2}\xi}\right)/2s,$$

$$= -w_{0}D\left(\lambda_{1}\Delta_{1}e^{-\lambda_{1}\xi} + \lambda_{2}\Delta_{2}e^{-\lambda_{2}\xi}\right)/2s,$$

где $D = (1 - e^{-\lambda_1 \xi}) / s$, $\Delta_{1,2} = 1 \pm a [(\gamma - 1)s^2 + \zeta] / 2f$. Для перехода к вещественным интегралам выражения (4)

Для перехода к вещественным интегралам выражения (4) и (5) представим в виде:

$$\bar{w} = m_0 a \left(I_2 - I_1 \right) / 4\pi i; \quad \bar{m} = m_0 \left(I'_3 + I''_3 + I'_4 - I'_4 \right) / 4\pi i, \quad (6)$$

где

$$I_{1} = \int_{L} \left(e^{\tau s - \lambda_{2}\xi} / fs \right) ds; \quad I_{2} = \int_{L} \left(e^{\tau s - \lambda_{1}\xi} / fs \right) ds;$$

$$I'_{3} = \int_{L}^{L} \left(e^{\tau s - \lambda_{2}\xi} / s \right) ds; \quad I''_{3} = \int_{L}^{L} \left(\phi e^{\tau s - \lambda_{2}\xi} / 2fs \right) ds;$$

$$I'_{4} = \int_{L}^{L} \left(e^{\tau s - \lambda_{1}\xi} / s \right) ds; \quad I''_{4} = \int_{L}^{L} \left(\phi e^{\tau s - \lambda_{1}\xi} / 2fs \right) ds;$$

L — контур Бромвича; $\phi = a \left[(\gamma - 1)s^2 + \zeta \right].$ Во втором варианте граничных условий:

$$\bar{w} = -q_0 \left(I_5' + I_5'' + I_6' + I_6' \right) / 4\pi i; \quad \bar{m} = q_0 a \left(I_8 - I_7 \right) / 4\pi i \gamma, \quad (7)$$

где

$$I_{5}' = \int_{L} \left(\lambda_{2} e^{\tau s - \lambda_{2} \xi} / s(\gamma s^{2} + \zeta) \right) ds;$$

$$I_{5}'' = \int_{L}^{L} \left(\lambda_{2} \phi e^{\tau s - \lambda_{2} \xi} / 2fs(\gamma s^{2} + \zeta) \right) ds;$$

$$I_{6}' = \int_{L}^{L} \left(\lambda_{1} e^{\tau s - \lambda_{1} \xi} / s(\gamma s^{2} + \zeta) \right) ds;$$

$$I_{6}'' = \int_{L}^{L} \left(\lambda_{1} \phi e^{\tau s - \lambda_{1} \xi} / 2fs(\gamma s^{2} + \zeta) \right) ds;$$

$$I_{7} = \int_{L} \left(\lambda_{2} e^{\tau s - \lambda_{2} \xi} / fs \right) ds; \quad I_{8} = \int_{L} \left(\lambda_{1} \phi e^{\tau s - \lambda_{1} \xi} / fs \right) ds.$$

Особые точки подынтегральных выражений в (6) и (7) и номера фигур, где изображены контуры интегрирования, приведены в табл. 2, $a_3 = (\zeta/\gamma)^{1/2}$, $a_4 = (1/\gamma)^{1/2}$. Контур для интегрирования I'_3 и I'_5 показан на рис. 1(а) штриховой линией и представляет разрез вдоль мнимой оси от $s = \pm i a_3$ до $s = \pm i a_4$ и далее до полукруга большого радиуса. На рис. 1 через 1–9, I–IX обозначены противоположные берега пути интегрирования.

			Таблица 2			
Интегралы	I_1, I_3'', I_5'', I_7	I_2, I_4'', I_6'', I_8	I'_{3}, I'_{5}			
Точки ветвл. <i>s</i>	$\pm a_1, \pm ia_2$	$\pm a_1, \pm ia_2$	$\pm ia_3, \pm ia_4$			
	$\pm a_1, \pm ia_2$					
№ рисунка	рис. 1(а)	рис. 1(б)	рис. 1(а)			
Полюс $s = 0$	Все подынтегральные функции					
Полюс $s = \pm i a_3$	Подынтегр. функции в интегралах $I'_5, I''_5, I''_6, I''_6$					

Вычисления проводились по формуле

$$I = \sum \operatorname{res}(s) - \sum \int_{\gamma_i} \int_{\gamma_i},$$

Рис. 1. Контур интегрирования: а — для интегралов I_1 , I_3 , I_5 , I_7 , б — для интегралов I_2 , I_4''

где γ_i (i > 1) — пути, проходимые в положительном направлении по берегам разреза и по дуге окружности с бесконечно малым радиусом. При стремлении радиуса малой окружности к нулю путь интегрирования и соответственно интеграл стремятся к нулю.

Подынтегральные выражения в (6) и (7) при $s \to \infty$ стремятся к нулю, λ_1 и λ_2 стремятся к постоянным величинам:

$$\lim_{s \to \infty} (\lambda_2/s) = 1, \quad \lim_{s \to \infty} (\lambda_1/s) = \sqrt{\gamma}.$$

Из приведенного следует, что волны распространяются вдоль стержня двумя скоростями c_1 и c_2 и область возмущения разбивается фронтами волн на две части. Координаты фронтов волн в каждый момент времени τ определяются величинами $\xi_1 = \tau$ и $\xi_2 = \tau/\sqrt{\gamma}$. Область $0 \le \xi \le \xi_1$ охвачена волной изгиба, параметры волны определяются интегралами I_1 , I_3 , I_5 и I_7 , которые не равны нулю при $\xi < \xi_1$ и равны нулю при $\xi > \xi_1$. В области $0 \le \xi \le \xi_2$ распространяются волны изгиба и сдвига, параметры волны сдвига определяются интегралами I_2 , I_4 , I_6 и I_8 .

Комплексные выражения в подынтегральных функциях (6) и (7) определены в работе [5] с учетом ограничений на их аргументы в зависимости от пути интегрирования. Здесь они приведены в табл. 3, где использованы следующие обозначения:

					Таблица 3
Путь	Комплексные величины			Интервал	
интегрирования	s	s^2	f	$\lambda_{1,2}$	изменения x, y
1/I	-x	x^2	$-f_{1}^{*}$	$\sqrt{R_1 \mp R_2}$	$-\infty \le x \le -a_1$
$2/\mathrm{II}$	-x	x^2	$\pm i f_2^*$	$\eta_1 \frac{\pm}{\mp} i \eta_2$	$-a_1 \le x \le 0$
$4/\mathrm{IV}$	x	x^2	$\pm i f_2^*$	$\eta_2 \frac{\pm}{\mp} i \eta_1$	$0 \le x \le a_1$
3/III	iy	$-y^{2}$	if_3^*	$\eta_3 \pm i\eta_4$	$0 \le x \le a_2$
5/V	-iy	$-y^{2}$	$-if_{3}^{*}$	$\eta_3 \mp i\eta_4$	$-a_2 \le y \le 0$
6, VI/7, VII	$\pm iy$	$-y^{2}$	$-f_{4}^{*}$	$\lambda_1 = i\eta_5$	$y \ge a_2/$
				$\lambda_2 = \eta_6$	$y \leq -a_2$

$$f_1^* = \sqrt{(x^2 - a_1^2)(x^2 + a_2^2)}; \quad f_2^* = \sqrt{(a_1^2 - x^2)(a_2^2 + x^2)};$$

$$f_3^* = \sqrt{(a_1^2 + y^2)(a_2^2 - y^2)}; \quad f_4^* = \sqrt{(y^2 + a_2^2)(y^2 - a_2^2)};$$

$$\eta_{1,2} = \sqrt{(R \mp R_1)/2}; \quad R = \sqrt{R_1^2 + R_2^2};$$

$$R_1 = \left[(\gamma + 1)x^2 + \zeta\right]/2; \quad R_2 = (\gamma - 1)\sqrt{(a_1^2 - x^2)(a_2^2 + x^2)}/2.$$

Интегралы по пути 1 + *I* и по всем берегам разреза вдоль мнимой оси взаимно уничтожаются. После вычислений находим:

Вариант 1.

$$w(\xi,\tau) = -\frac{m_0}{\zeta\nu} e^{-\alpha_1\xi} \sin\beta_1\xi + \frac{m_0a}{2\pi} \int_0^{a_1} \frac{T_0}{xf_2^*} dx; \ \xi_2 \le \xi \le \xi_1; -m(\xi,\tau) = \frac{m_0}{2} e^{-\alpha_1\xi} \left(\cos\beta_1\xi + frac_1\nu\sin\beta_1\xi\right) - \frac{m_0a}{4\pi} \int_0^{a_1} \frac{\left[(\gamma-1)x^2 + \zeta\right]T_0}{xf_2^*dx};$$
(8)

$$w(\xi,\tau) = -\frac{2m_0}{\zeta\nu} e^{-\alpha_1\xi} \sin\beta_1\xi; \quad 0 \le \xi \le \xi_2;$$

$$m(\xi,\tau) = m_0 e^{-\alpha_1\xi} \left(\cos\beta_1\xi + \frac{1}{\nu}\sin\beta_1\xi\right).$$
 (9)

Вариант 2.

$$w(\xi,\tau) = -\frac{q_0 e^{-\alpha_1 \xi}}{2\zeta} \left[\left(\alpha_1 + \frac{\beta_1}{\nu} \right) \cos \beta_1 \xi + \right. \\ \left. + \left(\beta_1 - \frac{\alpha_1}{\nu} \right) \sin \beta_1 \xi \right] - \frac{q_0 a}{4\pi} \int_0^{\pi} \frac{\left[(\gamma - 1) x^2 + \zeta \right] (\Phi_1 - \Phi_2)}{x f_2^* (\gamma x^2 + \zeta)} dx; \\ m(\xi,\tau) = \frac{q_0 e^{-\alpha_1 \xi}}{\gamma \zeta \nu} \left(\beta_1 \cos \beta_1 \xi - \alpha_1 \sin \beta_1 \xi \right) + \\ \left. + \frac{q_0 a}{2\pi \gamma} \int_0^{\alpha_1} \frac{(\Phi_1 - \Phi_2)}{x f_2^*} dx. \quad \xi_2 \le \xi \le \xi_1; \right] \\ w(\xi,\tau) = -\frac{q_0}{\zeta} e^{-\alpha_1 \xi} \left[\left(\alpha_1 + \frac{\beta_1}{\nu} \right) \cos \beta_1 \xi + \\ \left. + \left(\beta_1 - \frac{\alpha_1}{\nu} \right) \sin \beta_1 \xi \right]; \quad 0 \le \xi \le \xi_2; \right]$$
(11)
$$m(\xi,\tau) = \frac{2q_0 e^{-\alpha_1 \xi}}{\gamma \zeta \nu} \left(\beta_1 \cos \beta_1 \xi - \alpha_1 \sin \beta_1 \xi \right), \\ rge \qquad T_0 = e^{-(\tau x + \eta_1 \xi)} \cos \eta_2 \xi - e^{\tau x - \eta_2 \xi} \cos \eta_1 \xi; \\ \alpha_1 = \sqrt{\frac{1}{2} \left(\alpha_3 + \frac{\zeta}{2} \right)}; \quad \beta_1 = \sqrt{\frac{1}{2} \left(\alpha_3 - \frac{\zeta}{2} \right)}; \quad \nu = \sqrt{\frac{4}{\gamma \zeta} - 1}; \\ \Phi_1 = e^{-(\tau x + \eta_1 \xi)} \left(\eta_1 \cos \eta_2 \xi + \eta_2 \sin \eta_2 \xi \right); \\ \Phi_2 = e^{\tau x - \eta_2 \xi} \left(\eta_2 \cos \eta_1 \xi + \eta_1 \sin \eta_1 \xi \right). \end{cases}$$

3. Численный пример

Считаем, что сечение балки прямоугольное b = h = 0, 1 м, $F = b \times h, E = 2 \cdot 10^5$ МПа, $\rho = 8$ т/м³, $c_1 = 5 \cdot 10^3$ м/с, $c_2 = 2,84$ м/с, $\zeta = 1,35 \cdot 10^{-2}$, $\gamma = 3,1$, a = 0,95, $a_1 = 0,94$, $a_2 = 0,051$, $a_3 = 0,072$. Расчеты проводились по формулам (8)–(11).

Подынтегральные функции в интегралах (8) и (10) являются осциллирующими и в точках x = 0, $x = a_1$ имеют бесконечный разрыв. Поэтому при интегрировании по x обеспечивалось

Рис. 2. Графики прогиба и изгибающего момента: а — вариант 1; 6 — вариант 2

не менее 10 шагов в пределах длины полуволны, нижний предел принимался равным δ , а верхний предел — в виде $a_1(1-\delta)$, где $\delta = 10^{-15}$. Таким образом определены главные значения несобственных интегралов. Вычисления проводились по методу трапеций.

По результатам расчетов построены графики $w(\xi)$ и $m(\xi)$ (рис. 2). Из приведенных данных следует, что при нагружении стержня моментом и поперечной силой, приложенных на торце, стержень совершает апериодическое затухающее движение, деформации и напряжения возникают в области, не превышающей $\xi = 20$. Волновые движения в стержне не возникают.

4. Заключение

Прогибы и напряжения в стержне можно определить по аналитическим выражениям (9) и (10).

Список литературы

- Boley B.A., Chao C.C. Some Solutions of the Timoshenko Beam Equations // Journal of Applied Mechanics, Trans. ASME, Vol. 77. 1955. P. 579–586.
- [2] Plass H. J. Some Solutions of the Timoshenko Beam Equations of Short Pulse – Type Loadings // Journal of Applied Mechanics, Trans. ASME, Vol. 80, 1958. P. 379–385.
- [3] Айнбиндер А.Б., Камерштейн А.Г. Расчет магистральных трубопроводов на прочность и устойчивость. М.: Недра, 1982. 342 с.
- [4] Тимошенко С. П., Янг Д. Х., Уивер У. Колебания в инженерном деле. М.: Наука, 1985. 444 с.
- [5] Якупов Р. Г. Волны напряжения в стержне при действии подвижной нагрузки // ПМТФ. 2007. Т. 48. № 2. С. 112–122.