

ОСОБЕННОСТИ РАСПРОСТРАНЕНИЯ ВОЛН В ПЕСКЕ ПРИ РАЗЛИЧНОЙ НАСЫЩЕННОСТИ¹

Ахметов А. Т.*, Лукин С. В.*, Балапанов Д. М.*, Урманчеев С. Ф.*, Гумеров Н. М.**, Яхин И. К.** *Институт механики УНЦ РАН, Уфа **ФГБОУ ВПО Башкирский государственный университет, Уфа

Аннотация. Приводятся результаты экспериментальных и теоретических исследований распространения слабых ударных волн во влажном песке при различной водонасыщенности. Построена математическая модель и проведен численный анализ распространения импульсов давления в пористых средах с учетом капиллярных сил. Установлена немонотонная зависимость амплитуды волны, образующейся во влажной пористой среде, от степени водонасыщенности. Проанализирована эволюция быстрой, медленной и фильтрационной волн в зависимости от насыщенности системы водой. Проведена оценка влияния капиллярных сил на распространение продольных волн.

1. Введение

Результаты теоретических и экспериментальных исследований обнаруживают в водонасыщенном песке распространение двух типов продольных волн (быстрой и медленной) [1, 2]. Наличие двухволновой конфигурации связано с синфазными и противофазными колебаниями скелета пористой среды и насыщающей его жидкости. Исследования Г. М. Ляхова [3] и В. Е. Донцова [4] показали, что увеличение содержания газа оказывает существен-

¹Работа выполнена при финансовой поддержке Программы фундаментальных исследований ОЭММПУ РАН «Механика неоднородных жидкостей в полях внешних сил» и Гранта Президента РФ для государственной поддержки ведущих научных школ НШI-4381.2010.1

ное влияние на интенсивность угасания взрывных волн с расстоянием, она возрастает в десятки и сотни раз. При этом в десятки раз уменьшается скорость распространения максимума возмущения. В работе Ю. И. Колесникова [5] исследовано влияние поверхностного натяжения на формирование медленной продольной волны во влажном ненагруженном песке. Перед авторами стояла задача проведения экспериментальных и теоретических исследований распространения слабых ударных волн в насыпных пористых средах с объемным содержанием жидкости от 0 до 100%. Физико-химические и механические свойства этих сред зависят от свойств удерживаемой ими влаги. Кинетика массообменных процессов определяется подвижностью и энергией связи влаги с твердой фазой и является основой многих технологий. В частности, исследование водопроницаемости грунтов и почв методами акустического каротажа. управление флотацией и капиллярной пропиткой.

2. Установка и методика измерений

Для решения поставленной задачи ударная труба оснащается секцией насыпных сред (СНС) для изучения прохождения волн в газоводонасыщенной пористой среде с донными и боковыми датчиками. Схема установки приведена на рис. 1, она состоит из камеры высокого давления (КВД), камеры низкого давления (КНД), блока для смены диафрагм и секции насыпных сред. Из баллона со сжатым воздухом в камеру высокого давления нагнетается газ до давления разрыва диафрагмы. Для получения слабых ударных волн использовалась калька. Наиболее чувствительные датчики группы 3 расположены на дне секции насыпных сред, один из них регистрировал прошедшую волну по среде, другой — фильтрационную. Два датчика группы 2 на боковой стенке ударной трубы: один в КНД фиксировал параметры падающей волны, второй в СНС на уровне верхнего слоя насыпки фиксировал параметры вошедшей в пористую структуру волны. Калибровка проводилась путем сопоставления расчетных значений давления на фронте ударной волны, получающейся из

Рис. 1. Схема установки с системой регистрации давления и визуализации: 1 — блок для смены диафрагмы; 2 — пьезо-электрические датчики давления; 3 — донные пьезоэлектрические датчики давления (без сетки и с сеткой); 4 — смотровые окна; 5, 7 — усилители заряда; 6 — цифровой осциллограф; 8 — АЦП; 9 — компьютер с установленной программой регистрации данных LGraph; 10 — секция насыпных сред. Расстояние от диафрагмы до датчиков: LP1 = 660 мм, LP2 = 1820 мм, LP3 = LP4 = 2050 мм

классической волновой теории ударных волн, образующейся при распаде разрыва в газе. Нагнетание воздуха в КВД до давления 60 кПа приводит к разрыву диафрагмы из кальки, разделяющей КВД и КНД. Надо учитывать то, что фильтрация рабочего газа через диафрагму пренебрежимо мала (10 кПа). Следовательно, в КВД и в КНД не происходит уравновешивание давлений. После разрыва диафрагмы в трубе формируется ударная волна. Исследуемый пористый образец представлял собой насыпку из песчинок с небольшим разбросом по размерам (рис. 2) в секции насыпных сред. Использовалась фракция речного песка, выделенная

Рис. 2. Микрофотография состава насыпки

при продувке вентилятором. Засыпка частиц осуществлялась в месте разделения КНД и СНС, где на трубе оборудован разборный стык. Затем насыпку подвергали вибрационной утруске и выравнивали ее поверхность при помощи шеста с круглым наконечником по диаметру секции. При этом высота насыпки не превышала фиксированного уровня.

Пористость насыпки определялась по стандартной методике. Взвешивался определенный объем высушенной, уплотнённой вибрационной утруской пористой среды V_0 , затем этот объем насыщался водой и производилось взвешивание насыщенной среды. Зная массы m_1 и m_2 сухой и насыщенной среды соответственно, можно рассчитать массу воды, которая заняла 100% порового пространства песка объемом V_0 . Также зная, что объем воды в мл V_{n0} соответствует массе воды в граммах, мы можем рассчитать коэффициент пористости среды (песка) по формуле:

$$K_0 = \frac{V_{\rm n0}}{V_0} \cdot 100\%. \tag{1}$$

Таким образом, найденная для насыпки пористость получилась равной 35%.

3. Экспериментальные результаты

Осциллограммы при различном содержании защемленной воды показаны на рис. 3. Красными линиями показаны данные с

Рис. 3. Осциллограммы при различном содержании защемленной воды. Красные линии соответствуют датчику LP1; синие — LP2; зеленые — LP3; голубые — LP4. а) сухой песок (насыщенность 0%), б) насыщенность 10%, в) насыщенность 97%, г) насыщенность 100%

датчика LP1, расположенного над пористым образцом. Зелеными линиями — с датчика LP2. Голубые и синие линии соответствуют датчикам LP3 и LP4 соответственно. Значения для давления приведены в вольтах (1 В \approx 90 кПа). За 40 мкс ударная волна успевает несколько раз отразиться от дна и вершины трубы (кривая красного цвета). Данные, полученные с датчика LP2, показывают, что в пористой среде распространяется волна сжатия, за которой следует волна разряжения. Датчик LP4 отображает параметры быстрой волны, медленная волна видна на осциллограмме, полученной с датчика LP3. При увеличении насыщенности до 10% происходит уменьшение амплитуды упругой волны в 4 раза. При увеличении до 97% амплитуда увеличивается на порядок. Затем падает в три раза до значений, полученных при прохождении волны в сухом песке.

Построены интегральные зависимости скорости распространения и амплитуды прошедшей по среде и фильтрационной волн от водонасыщенности (рис. 4). Кривые демонстрируют немонотонную зависимость, что говорит об изменении структуры среды при средних значениях водонасыщенности.

4. Математическая модель

Рассмотрим модель пористого тела в виде системы, состоящей из сферических частиц одинакового размера. Частицы могут быть уложены различным способом. Кубическая укладка, когда частицы расположены в вершинах куба, соответствует наименее плотной укладке. Наименьшая пористость такой укладки равна 0,4764. Наиболее плотная — гексагональная укладка, когда частица соприкасается с двенадцатью соседними частицами. Наименьшая пористость такой укладки равна 0,2595. Рассмотрим схему взаимодействия частиц показанную на рис. 5 [5, 6, 8, 9]. По мере поступления флюида в пористую среду между двумя частицами образуется скопление жидкости, которое имеет вид двояковогнутой линзы. Кривизна боковой поверхности измеряется радиусом r_2 .

Рис. 4. График зависимости амплитуды прошедшей волны от степени водонасыщенности. Сплошной линией показаны средние значения амплитуды прошедшей волны для открытого датчика

Тогда сила капиллярного сцепления между двумя частицами равна [6]:

$$F_{\sigma} = \sigma \pi a \sin \varphi \left(a \sin \varphi \left(\frac{1}{r_2} - \frac{1}{r_1} \right) + 2 \sin \left(\varphi + \theta \right) \right), \qquad (2)$$

где $r_1 = a \sin \varphi - \left(a \left(1 - \cos \varphi\right) + \frac{l}{2}\right) \frac{1 - \sin \left(\varphi + \theta\right)}{\cos \left(\varphi + \theta\right)}, \quad r_2 = \frac{a \left(1 - \cos \varphi\right) + l/2}{\cos \left(\varphi + \theta\right)}; \sigma$ — поверхностное натяжение жидкости; θ — краевой угол смачивания жидкостью твердого тела; φ — угол,

образованный двумя выходящими из центра частицы лучами, один из которых направлен в центр мениска, другой к его краю; a — радиус частицы.

Рассмотрим частицу с двенадцатью прилегающими к ней сферами. Гексагональная ячейка образуется соединением центров этих сфер (рис. 6).

Для определения параметров капиллярной силы используем три слоя сфер. Верхний и нижний слои содержат шесть 1/6-

Рис. 5. Схема взаимодействия частиц: а) сухой песок, б) частично насыщенный песок, в) полностью насыщенная пористая среда

части сферы и одну полусферу. Следовательно, общее число сфер равно 6. Чтобы подсчитать число сфер в среднем ряду необходимо использовать свойство симметрии, согласно которому часть сферы по одну сторону от средней частицы должна уравновешиваться частью по другую сторону. Поскольку в основании лежит шестиугольник, то в среднем слое находится 3 сферы. Таким образом, объем твердой фазы в гексагональной ячейке равен $V_2 = 4/3\pi a^3 \cdot 6 = 8\pi a^3$. Определим объем всей ячейки. Общая площадь состоит из трех пирамид, в основании которых шестиугольник. Площадь шестиугольника в основании равна $3/2\sqrt{3}(2a+l)^2$. Высота пирамиды равна $(2a+l)\sqrt{2/3}$. Следовательно, полный объем гексагональной ячейки равен $V = 3/2\sqrt{2}(2a+l)^3$. Тогда можно получить соотношение для расстояния между частицами:

$$l = 2a \left(\left(\frac{\sqrt{2}\pi}{3\alpha_2} \right)^{1/3} - 1 \right), \tag{3}$$

Рис. б. Гексагональная упаковка

где α_2 — объемное содержание частиц скелета пористой среды в единице объема смеси. Следуя работе [6] объем жидкости равен:

$$V_6 = 2\pi \left(\cos(\varphi + \theta) + (\varphi + \theta) - \frac{\pi}{2} \right)^2 \left(r_2^3 + r_1 r_2^2 \right) + r_1^2 r_2 \cos(\varphi + \theta).$$

Выражение между углом φ и объемным содержанием фаз:

$$\psi \alpha_1 \left(2a+l\right)^3 = 2\sqrt{2\pi} \left(\cos\left(\varphi+\theta\right) + \left(\varphi+\theta\right) - \frac{\pi}{2}\right)^2 \times \left(r_2^3 + r_1 r_2^2\right) + r_1^2 r_2 \cos\left(\varphi+\theta\right),$$
(4)

где ψ — объемное содержание жидкости в единице объема газовой фазы. Предполагаем, что при движении частиц угол θ остается неизменным. В дальнейших расчетах примем, что $\theta = \pi/5$ из решения соотношения 4 относительно φ .

На основе предположений механики многофазных сред рассмотрим одномерное движение двухфазной системы, состоящей из вязкоупругого скелета и насыщающих его жидкости или газа. Систему уравнений можно записать в следующем виде [7]:

$$\frac{\partial \rho_i}{\partial t} + \frac{\partial (\rho_i v_i)}{\partial x} = 0,$$

$$\rho_1 \frac{d_1 v_1}{dt} = -\alpha_1 \frac{\partial p_1}{\partial x} - F_{12}, \rho_2 \frac{d_2 v_2}{dt} = -\alpha_2 \frac{\partial p_1}{\partial x} + F_{12} + \frac{\partial \sigma_{2*}}{\partial x}, \quad (5)$$

$$\frac{d_2 \sigma_{2*}}{dt} - E_{f*} \frac{d_2 \varepsilon_{2*}}{dt} = -\frac{1}{t_{20}} \left(\sigma_{2*} - E_{e*} \varepsilon_{2*} \right).$$

В случае насыщения пористой среды жидкостью система дополняется уравнениями состояния:

$$p_i - p_0 = C_i^2 \left(\rho_i^0 - \rho_{i0}^0 \right), \quad p_2 = p_1 - \frac{v\sigma_{2*}}{\alpha_2}.$$
 (6)

Когда дисперсионная фаза газ, система 5 замыкается уравнением сохранения энергии для каждой фазы и уравнениями состояния:

$$\rho_{1} \frac{d_{1}u_{1}}{dt} = \frac{\alpha_{1}p_{1}}{\rho_{1}^{0}} \frac{d_{1}\rho_{1}^{0}}{dt} + F_{12} \left(\upsilon_{1} - \upsilon_{1}\right) - Q_{12} + \frac{1}{2}\sigma_{2*}\frac{\partial\upsilon_{2}}{\partial x},$$

$$\rho_{2} \frac{d_{2}u_{2T}}{dt} = Q_{12} + \frac{1}{2}\sigma_{2*}\frac{\partial\upsilon_{2}}{\partial x},$$

$$p_{1} = \rho_{1}^{0}RT_{1}, u_{1} = C_{\upsilon 1} \left(T_{1} - T_{0}\right), u_{2T} = C_{2} \left(T_{2} - T_{0}\right),$$
(7)

где $\alpha_1 + \alpha_2 = 1$, $\rho_i = \alpha_i \rho_i^0$; ρ_1^0 , $\rho_1 -$ истинная и приведенная плотности газа; p_1 – давление в газе; α_i , v_i , u_i – объемное содержание, скорость и внутренняя энергия *i*-й компоненты двухфазной среды; F_{ji} — межфазная сила; Q_{ji} — интенсивность передачи тепла от *j*-й к *i*-й фазе; R — газовая постоянная; C_{V_1} — удельная теплоемкость газа при постоянном объеме; T_i — температура *i*-й фазы, индекс i = 1 относится к газу, i = 2 к твердой фазе.

Сила взаимодействия $F_{12} = F_{\mu} + F_{\sigma}$ между несущей средой и частицами состоит из силы трения Стокса и осредненной силы капиллярного сцепления:

$$F_{\sigma} = \alpha_1 \alpha_2 \sigma \pi a \sin \varphi \left(a \sin \varphi \left(\frac{1}{r_2} - \frac{1}{r_1} \right) + 2 \sin \left(\varphi + \theta \right) \right).$$
(8)

Для определения коэффициента силы сопротивления η_{μ} используем следующие формулы [7, 10, 12]:

$$\begin{split} \eta_{\mu} &\sim \frac{\alpha_{10}a_{20}^2}{K_0} - \text{для жидкости,} \\ \eta_{\mu} &= \frac{3}{16}C_{\mu}\text{Re}_{12}, \text{ где Re}_{12} = \frac{2a_2\rho_1^0|\upsilon_1 - \upsilon_2|}{\mu_1} - \text{для газа.} \\ \text{Здесь } C_{\mu} &= \frac{100}{37}\left(\left(\alpha_2 - 0, 08\right)C_{2\mu} + \left(0, 45 - \alpha_2\right)C_{1\mu}\right), C_{1\mu} = \frac{24}{\text{Re}_{12}} + \frac{4, 4}{\text{Re}_{12}^{0.5}} + 0, 42, C_{2\mu} = \frac{4}{3\alpha_1}\left(1, 75 + \frac{150\alpha_2}{\alpha_1\text{Re}_{12}}\right), K_0 - \text{проницаемость среды.} \end{split}$$

При отсутствии фазовых переходов и при условии, что коэффициент теплопроводности материала твердой фазы много больше коэффициента теплопроводности газа, интенсивность межфазного теплообмена выражается в следующем виде:

$$Q_{12} = 3\alpha_2 a_2^{-2} \lambda_* \left(T_1 - T_2 \right),$$

где $\lambda_* = \lambda_1 N u$, λ_1 – коэффициент теплопроводности газа. Для числа Нуссельта воспользуемся эмпирической формулой А. Ф. Чудновского [11]:

Nu =
$$\begin{cases} 2 + 0,106 \operatorname{Re}_{12} \operatorname{Pr}_{1}^{\frac{1}{3}}, & \operatorname{Re}_{12} \le 200, \\ 2,27 + 0,06 \operatorname{Re}_{12}^{0,67} \operatorname{Pr}_{1}^{\frac{1}{3}}, & \operatorname{Re}_{12} > 200. \end{cases}$$

где число Прандтля $\Pr_1 = C_p \mu_1 / \lambda_1$.

Модули упругости скелета определим через скорость звука в скелете, соответствующими мгновенному и длительному модулям:

$$E_{f*} = \rho_{20} D_{f*}^2, \quad E_{e*} = \rho_{20} D_{e*}^2,$$

где ρ_{20} — начальная приведенная плотность частиц скелета; D_{f*} , D_{e*} — скорости звука в скелете.

Для численной реализации системы уравнений используется двухшаговая схема Лакса–Вендроффа.

На рис. 7 показаны численные осциллограммы давления и полного напряжения в пористой среде, насыщенной газом. Видно

Рис. 7. Численные расчеты распространения волн давления в пористой среде насыщенной газом. Красные линии соответствуют датчику LP1, синие — LP2, зеленые — LP3, голубые — LP4

хорошее качественное соответствие между экспериментальными (рис. 3) и численными результатами. Поскольку в реальных пористых средах действуют дополнительные механизмы диссипации энергии медленной волны, в численных экспериментах амплитуда медленной волны значительно ниже (графики зеленого цвета). Осцилляции на переднем фронте волны — погрешность численной схемы.

На основании выполненных экспериментов можно предположить, что при ударных нагружениях происходит дополнительная переупаковка предварительно уплотненной насыпки, что сильнее проявляется при водонасыщенности до 10%. Это также приводит к ослаблению фильтрационной волны при последующих нагружениях. Обнаружена большая чувствительность от водонасыщенности волны, проходящей по скелету при малых и больших концентрациях влаги, до 10% и свыше 97% соответственно. Физическая сторона такого поведения ударной волны может быть связана с расклинивающим давлением при малых концентрациях воды, при больших концентрациях — существенным уменьшением пузырьков газа. В диапазоне от 10 до 97% основную роль играет двухфазная газожидкостная система заполняющая поровое пространство в песке. При полном водонасыщении (100%) фильтрационная и скелетная волны по форме близки к волне, которую мы фиксируем в сухом песке, континуальные свойства воздуха и воды для ударной волны оказываются идентичными.

5. Заключение

Получены характерные волновые картины при распространении ударных импульсов в образце и построены интегральные зависимости скорости распространения и коэффициента затухания при различных водонасыщенностях песка. При малом насыщении образца флюидом (до 10%) возникают дополнительные демпфирующие силы, обусловленные расклинивающим давлением, что приводит к существенному затуханию импульса. При увеличении насыщенности от 10% до 97% происходит рост массы и импульса области среды, охватываемой быстрой волной, что приводит к усилению пикового давления на дне пористого образца. Эксперименты показали, что при дальнейшем росте водонасыщенности наличие отдельных пузырьков газа приводит к более интенсивному затуханию импульса. Кривые демонстрируют немонотонную зависимость, что говорит об изменении механизма взаимодействия между частицами среды и насыщающей фазой при увеличении водонасыщенности.

Полученные результаты могут быть полезны для разработки методов акустической диагностики водонасыщенности пород, а также в области гашения ударных волн с помощью пористых сред.

Список литературы

 Biot M.A. Theory of Propagation of Elastic Waves in a Fluid Saturated Porous Solid. 1. Low Frequency Range // The Journal of the Acoustical Society of America. 1956. V. 28. Pp. 168–178.

- [2] Plona T.J. Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies // Applied Physics letters. 1980. V. 36, № 4. Pp. 259–261.
- [3] Ляхов Г.М. Основы динамики взрыва в грунтах и горных породах. Москва. 1974. 298 с.
- [4] Донцов В.Е., Кузнецов В.В., Накоряков В.Е. Волны давления в пористой среде, насыщенной жидкостью с пузырьками газа // Известия АН СССР. МЖГ. 1987. № 4. С. 85–92.
- [5] Ю.И. Колесников, Д.А. Медных изменение акустических свойств ненагруженного влажного песка в процессе высыхания // Акустика неоднородных сред. Новосибирск. 2007. № 124. С. 53–57.
- [6] Ю.В. Найдич, Лавриненко И.А. Петрищев В.Я. Исследование капиллярных сил сцепления между твердыми частицами с прослойкой жидкости на контакте // Порошковая металлургия. 1965. № 2.
- [7] Нигматулин Р.И. Основы механики гетерогенных сред. Москва. 1978. 336 с.
- [8] А.В. Лыков Явления переноса в капиллярно-пористых телах. Москва. 1954. 298 с.
- [9] Y.Chen, Y.Zhao, H.Gao, J. Zheng Liquid bridge force between two unequal-sized spheres or a sphere and a plane // Particuology. 2011. № 9. Pp. 379–380.
- [10] Ergun S. Fluid flow through packed colums // Chem. Eng. Progress. 1952. V. 48, № 2. Pp. 89–94.
- [11] Чудновский А.Ф. Теплообмен в дисперсных средах. М.: Гостехиздат, 1954. 441 с.
- [12] Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1988. 736 с.