

ИССЛЕДОВАНИЕ ОБЛАСТЕЙ ПРИМЕНИМОСТИ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ПУЗЫРЬКОВОГО КЛАСТЕРА¹

Насибуллаева Э. Ш.*,**, Ахатов И. Ш.**,***

*Институт механики УНЦ РАН, Уфа **Центр «Микро- и наномасштабная динамика дисперсных систем», БашГУ, Уфа

***Department of Mechanical Engineering, North Dakota State University, Fargo, USA

Аннотация. В работе исследуется математическая модель пузырькового кластера, подвергающегося воздействию акустическим полем. В данной модели кластер рассматривается как большая капля, содержащая в себе жидкость и множество микропузырьков. Построены области применимости математической модели пузырькового кластера в пространстве параметров (α , R_0), где α — концентрация пузырьков в кластере; R_0 — начальный радиус кластера.

1. Постановка задачи

В данной работе исследуется множество газовых пузырьков, совершающих колебания в конечном объеме безграничной слабосжимаемой вязкой жидкости под действием акустического поля. В этом случае в жидкости можно выделить сферическую область, включающую в себя пузырьки, — пузырьковый кластер. Таким образом, кластер может быть рассмотрен как большая сферическая капля, содержащая в себе жидкость и множество

¹Работа выполнена при финансовой поддержке грантов Министерства образования и науки РФ (11.G34.31.0040) и РФФИ (гранты №№ 11–01–97007, 11–08–00823)

микропузырьков. Тогда математическая модель монодисперсного пузырькового кластера, построенная при предположениях, которые рассмотрены подробно в п. 2 данной статьи, будет иметь следующий вид [1]:

$$\begin{aligned} \ddot{a}\ddot{a} + \frac{3}{2}\dot{a}^{2} &= \frac{p_{a} - p_{c}}{\rho_{l}}, \quad R\ddot{R} + \frac{3}{2}\dot{R}^{2} = \frac{p_{c} - p_{I}}{\rho_{l}} + \frac{R}{\rho_{l}C_{l}}\frac{d}{dt}\left[p_{c} - p_{I}\right], \\ Na^{2}\dot{a} &= R^{2}\dot{R}, \qquad p_{a} = \left(p_{0} + \frac{2\sigma}{a_{0}}\right)\left(\frac{a}{a_{0}}\right)^{-3\gamma} - \frac{4\mu\dot{a}}{a} - \frac{2\sigma}{a}, \\ p_{I} &= p_{0} - \Delta P\sin(\omega t). \end{aligned}$$

Здесь a = a(t) — радиус пузырька; p_a — давление газа около стенки пузырька; $p_c = p_c(t)$ — давление жидкости в кластере; ρ_l — плотность жидкости; R = R(t) — радиус кластера; p_I — внешнее давление; C_l — скорость звука в жидкости; N — число пузырьков; p_0 — начальное давление в жидкости; σ — коэффициент поверхностного натяжения; a_0 — начальный радиус пузырька; γ — показатель адиабаты; μ — коэффициент динамической вязкости жидкости; ΔP — амплитуда внешнего давления; ω — угловая частота и t — время.

2. Основные предположения

Приведем основные предположения, при которых осуществлялось моделирование задачи, а также соответствующие численные значения различных параметров данной системы, при которых построенная математическая модель остается верной.

Предположение 1. Размер кластера R мал по сравнению с длиной акустической волны λ , то есть

$$R << \lambda. \tag{1}$$

Длина волны определяется по формуле $\lambda = C/f$, где C – скорость звука; f – частота колебаний. В случае воздушных пузырьков в воде, адиабатическом процессе и при концентрации пузырьков в кластере $\alpha > 10^{-3}$ для скорости звука в пузырьковой смеси C можно взять следующее приближение [2]:

$$C \approx \frac{C_g}{\sqrt{\alpha(1-\alpha)\rho_l/\rho_g}},$$

где C_g — скорость звука в воздухе; ρ_l и ρ_g — плотности жидкости и газа соответственно.

На рис. 1 представлен график зависимости длины волны λ от концентрации пузырьков в кластере α для трех различных значений частоты акустического поля f = 20 кГц, 100 кГц и 700 кГц. Эти частоты были выбраны по следующим причинам: для пузырька с начальным радиусом 5 мкм частота f = 700 кГп расположена около резонансной частоты одиночного пузырька; частота f = 100 кГц расположена около резонансной частоты пузырька в кластере (3); частота f = 20 кГц расположена вдали от этих резонансных частот. Кривая $\lambda = \lambda(\alpha)$ может быть рассмотрена как линия, ниже которой условие (1) выполняется для точек (α, R_0). Видно, что для частоты f = 20 кГц это условие будет верным для кластера начального радиуса $R_0 = 10^{-3}$ м, значение которого обозначено пунктирной линией на рис. 1. Следовательно, при численных расчетах динамики пузырькового кластера могут быть использованы следующие значения параметров: $R_0 = 10^{-3}$ м и f = 20 кГц.

Предположение 2. Выполняется условие неперекрываемости сечений рассеяния [3]

$$\sigma^{1/2} \ll l,\tag{2}$$

где σ — величина сечения рассеяния; l — среднее расстояние между пузырьками. Это условие аналогично условию малости плотности пузырьков в кластере, а, следовательно, малой концентрации пузырьков в кластере.

Вывод условия (2) основывается на следующих ограничениях [4]. Радиус пузырьков a много меньше среднего расстояния между пузырьками l, которое, в свою очередь, много меньше длины

Рис. 1. Длина акустической волны λ в зависимости от концентрации пузырьков в кластере α . Пунктирной горизонтальной линией обозначен размер кластера, который использовался при численных экспериментах

акустической волны λ , т. е. $a \ll l \ll \lambda$. Пузырьки сферически– симметричные, одинаковых радиусов, расположены случайным образом в объеме, а их центры неподвижны.

Если радиус воздушного пузырька $a << \lambda$, то рассеяние на нем в поле акустической волны почти изотропно. В этом случае сечение рассеяния воздушного пузырька приближенно равно [5]

$$\sigma = rac{4\pi a^2}{\left[(\omega_r/\omega)^2 - 1
ight]^2 + (\omega/\omega_r)\delta^2},$$

где $\omega_r = 2\pi f_r, \ f_r = rac{\sqrt{3\gamma P_0 + 2\sigma(3\gamma - 1)/a}}{2\pi a\sqrt{
ho_l}}$ — резонансная ча

стота в предположении адиабатичности процесса пульсаций; γ — отношение удельных теплоемкостей газа в пузырьке; P_0 — гидростатическое давление в окружающей среде; $\omega = 2\pi f$, f — частота падающей волны; $\delta = \delta_r + \delta_t + \delta_\nu$ — постоянная затухания колебаний пузырька, связанная с рассеянием, тепловыми и вязкими потерями, значения которых представлены в [4, 5, 6].

Проверим, выполнение данного условия для $N = 10^4$ пузырьков радиуса $a_0 = 5$ мкм в кластере радиуса $R_0 = 10^{-3}$ м при

Рис. 2. Зависимость $\sigma^{1/2}$ (штриховые линии для f_r ; пунктирные линии для $f_r^{(c)}$) и l (сплошные линии) от концентрации пузырьков α . Тонкая линия — для $a_0 = 5$ мкм; толстая линия — для $a_0 = 25$ мкм

воздействии акустическим полем с частотой f = 20 кГц. Резонансная частота такого пузырька равна $f_r = 721$ кГц; величина $\sigma^{1/2} \approx 1.3 \cdot 10^{-9}$ м; среднее расстояние между пузырьками $l \approx \sqrt[3]{4\pi/(3N)}R_0 \approx 7.5 \cdot 10^{-5}$ м. Таким образом, условие неперекрываемости сечений (2) выполняется. Если же брать для расчетов резонансную частоту не одиночного пузырька, а пузырька в кластере $f_r^{(c)} = \omega_c/(2\pi)$, где ω_c вычисляется по формуле [1]

$$\omega_c^2 = \frac{3\gamma p_0 + 2\sigma (3\gamma - 1)/a_0}{\rho_l a_0^2 \left(1 + N a_0/R_0\right)},\tag{3}$$

то получим, что $f_r^{(c)} \approx 101$ кГц и $\sigma^{1/2} \approx 7 \cdot 10^{-7}$ м, т. е. условие (2) также выполняется.

На рис. 2 продемонстрировано выполнение условия (2) для двух различных радиусов пузырьков ($a_0 = 5$ мкм — тонкие линии и $a_0 = 25$ мкм — толстые линии) и двух различных резонансных частот (f_r — штриховые линии и $f_r^{(c)}$ — пунктирные линии) в зависимости от концентрации пузырьков в кластере α . Видно, что с увеличением радиуса пузырька кривые $\sigma^{1/2}$ и

Рис. 3. Зависимость $\sigma^{1/2}$ (штриховые линии для f_r ; пунктирные линии для $f_r^{(c)}$) и l (сплошные линии) от начального радиса кластера R_0 . Тонкая линия – для $a_0 = 5$ мкм; толстая линия – для $a_0 = 25$ мкм

l сдвигаются параллельно вверх, но расстояние между ними сокращается. Для резонансной частоты $f_r^{(c)}$ кривые $\sigma^{1/2}$ являются немонотонными. Причина в том, что значение величины σ для частоты f близкой к резонансной частоте и вдали от нее может отличаться на несколько порядков. Так как резонансная частота $f_r^{(c)}$ пузырька в кластере зависит от параметров R_0 , a_0 и N (см. (3)), следовательно, и от концентрации пузырьков в кластере α , то эта частота может стать близкой к частоте f. Максимальное значение $\sigma^{1/2}$ соответствует случаю, когда $f = f_r^{(c)}$.

На рис. 3 представлено выполнение условия (2) для величины R_0 . Здесь также наблюдаются немонотонные кривые $\sigma^{1/2}$ (пунктирные линии) с максимальным значением при $f = f_r^{(c)}$.

Заметим, что при выполнении Предположений 1 и 2, давление внутри кластера p_c можно считать однородным, т. е. $p_c = p_c(t)$.

Предположение 3. Поле давления внутри пузырьков является однородным.

Данное предположение выполняется в двух случаях:

— когда пузырьки слабо сжимаются, т. е. когда число Маха

колеблющейся поверхности пузырька мало [7]

$$M = \frac{\dot{a}}{C_g} << 1,$$

где a = a(t) - функция изменения границы пузырька;

— когда число Маха не мало, но безразмерная величина [8]

$$\epsilon_p \equiv \frac{a\ddot{a}}{\gamma p_g / \rho_g} \approx 0,$$

где γ — показатель адиабаты; p_g — давление газа в центре пузырька; $\rho_g = \rho_0 \left(a_0/a(t) \right)^3$ — плотность газа в пузырьке; ρ_0 — плотность газа в пузырьке в начальный момент времени.

Получено, что в пространстве параметров $\alpha \in [10^{-3}, 10^{-1}]$ и $R_0 \in [10^{-4}, 2 \cdot 10^{-2}]$ м для амплитуды акустического поля $\Delta P \in [1, 5]$ атм и начального радиуса пузырьков $a_0 \in [5, 25]$ мкм один из этих двух случаев будет всегда реализован.

Предположение 4. Газовые пузырьки совершают сферически-симметричные радиальные движения.

Данное предположение верно, когда среднее расстояние между пузырьками l много больше их радиуса a, т. е. оно автоматически следует из предположений о гомобаричности давления внутри кластера (Предположения 1 и 2).

Предположение 5. В системе газовые пузырьки–жидкость отсутствуют фазовые переходы, а также диффузия газа между пузырьком и жидкостью. Однородное давление внутри пузырьков удовлетворяет адиабатическому закону.

Данные предположения позволяют получить в пространстве параметров (α , R_0) области применимости математической модели пузырькового кластера, подвергающегося действию акустического поля.

3. Области применимости математической модели пузырькового кластера

Для резонансной частоты одиночного пузырька f_r в диапазонах параметров $R_0 \in [10^{-4}, 2 \cdot 10^{-2}]$ м и $\alpha \in [10^{-3}, 10^{-1}]$ условие (2) будет всегда выполняться как для пузырьков с начальным

Рис. 4. Области применимости математической модели пузырькового кластера для (а) $a_0 = 5$ мкм и (b) $a_0 = 25$ мкм. Параллельными вертикальными линиями заштрихована область, в которой кластер не существует. Линии уровня: $I - R_0 = \lambda$; $II - \sigma^{1/2} = l$

радиусом $a_0 = 5$ мкм, так и для пузырьков с начальным радиусом $a_0 = 25$ мкм, а, следовательно, и для всех промежуточных значений $a_0 \in [5,25]$ мкм. Таким образом, если на рис. 1 кривую $\lambda = \lambda(\alpha)$ интерпретировать как кривую уровня $R_0 = \lambda$, то для f_r и управляющей частоты f = 20 кГц область под сплошной линией будет областью, в которой математическая модель пузырькового кластера будет справедлива.

Области применимости математической модели монодисперсного пузырькового кластера представлены на рис. 4(а) для пузырьков начального радиуса $a_0 = 5$ мкм и на рис. 4(b) для пузырьков начального радиуса $a_0 = 25$ мкм для резонансной частоты пузырька в кластере $f_r^{(c)}$. Данные области заштрихованы. Область, заштрихованная параллельными вертикальными линиями на рис. 4(b)б является областью, где кластер при данных значениях параметров не существует. Римская цифра I обозначает линию уровня $R_0 = \lambda$ (см., Предположение 1), а цифра II — линию уровня $\sigma^{1/2} = l$ (см., Предположение 2). Видно, что увеличение начального радиуса пузырька от $a_0 = 5$ мкм до $a_0 = 25$ мкм приводит к уменьшению и сдвигу влево областей, где условие (2) не удовлетворяется.

4. Заключение

В представленной работе исследованы области применимости математической модели пузырькового кластера, подвергающегося воздействию акустическим полем, в пространстве параметров (α, R_0). Получено что, если при численном эксперименте в качестве резонансной частоты используется резонансная частота пузырька в монодисперсном кластере $f_r^{(c)}$, то при увеличении начального радиуса пузырька области применимости модели уменьшаются.

Список литературы

- Насибуллаева Э. Ш., Ахатов И. Ш. Динамика пузырькового кластера в акустическом поле // Акуст. ж. 2005. Т. 51, № 6. С. 709– 717.
- [2] Уоллис Г. Одномерные двухфазные течения. М.: Мир, 1972. 440 с.
- [3] Foldy L. L. The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers // Phys. Rev. 1945. V. 67. P. 107–119.
- [4] Красильников В. А., Крылов В. В. Введение в физическую акустику. М.: Наука, 1984. 403 с.
- [5] Исимару А. Распространение и рассеяние волн в случайно– неоднородных средах. М.: Мир, 1981. Т. 1. 280 с.
- [6] Devin C. Survey of thermal, radiation and viscous damping of pulsating air bubbles in water // JASA, 1959. V. 31. P. 1654.
- [7] Нигматулин Р. И. Динамика многофазных сред. Ч. І. М.: Наука. 1987. 464 с.
- [8] Lin H., Storey B. D., Szeri A. J. Inertially driven inhomogeneities in violently collapsing bubbles: the validity of the Reyleigh–Plesset equation // J. Fluid Mech. 2002. V. 452. P. 145–162.