

Исследование растекания капли воды по поверхности металла методами молекулярной динамики 1

Моисеева Е.Ф., Малышев В.Л.

Центр «Микро- и наномасштабная динамика дисперсных систем» БашГУ, Уфа

В статье представлены результаты моделирования методом молекулярной динамики для системы «водаметалл-водяной пар». Проведена верификация метода путем сравнения численных результатов с экспериментальными данными. Приведены результаты численного моделирования процесса растекания капли воды по поверхности платины.

1. Введение

Явления, связанные с взаимодействием жидкости, пара и твердого тела, а также растекание жидкости по твердой поверхности играют важную роль в изучении процессов теплообмена при фазовом переходе. Во многих задачах твердое тело рассматривается как нагреватель или конденсатор. Методы, используемые в механике и термодинамике, зачастую не позволяют с должной точностью рассмотреть процессы, происходящие вблизи линии контакта трех фаз, в то время как методы молекулярной динамики, описывают их с достаточной точностью. В 1998 году Маруяма представил результаты моделирования капли жидкости, находящейся в термодинамическом равновесии [1]. В 2000 году были опубликованы результаты по зарождению парового пузырька в жидкости [2]. В 2002 году Маруяма и Кимура представили результаты моделирования капли жидкого аргона на поверхности платины [3]. Ими изучена зависимость структуры капли от типа решетки и параметров потенциала взаимодействия. Одним из самых распространенных веществ в мире является вода. Поэтому моделирование динамики молекул воды интересно не только с практической точки зрения, но и с точки зрения фундаментальных исследований. В данной работе представлены результаты моделирования капли воды на поверхности платины, показан процесс растекания ее по поверхности металла при различных термодинамических параметрах.

2. Математическая модель

Моделирование методами молекулярной динамики используется для определения свойств систем, в которых движение частиц (атомов или молекул) определяется вторым законом Ньютона. В классической молекулярной динамике, положения частиц определяются из решения классических уравнений движения:

$$\frac{d^2r_i}{dt^2} = \frac{F(r_i)}{m_i}, F(r_i) = -\frac{\partial}{\partial r_i}U(r^N), \tag{1}$$

где r_i — радиус-вектор i-й частицы; m_i — масса i-й частицы и v_i — ее скорость.

Однако, прежде всего, необходимо вычислить силу F(i), действующую на атом i, которая в большинстве случаев вычисляется в соответствии с потенциалом взаимодействия $U(r^N)$, где $r^N=(r_1,r_2,...,r_3)$ представляет собой набор координат всех частиц.

2.1. Модель воды

Компьютерное моделирование воды впервые было описано в работах Ваттса и Баркера [4], Рахмана и Штиллингера примерно сорок лет назад [5]. Основной задачей при моделировании воды является выбор модели потенциала, описывающей взаимодействие молекул. В данной работе используется модель ТІР4Р. Подобная геометрия была предложена Йоргенсеном [6], который определил параметры потенциала с целью наиболее точного воспроизведения энтальпии парообразования и плотности жидкой воды при комнатной температуре.

Особенность этой модели заключается в том, что расположение частицы, имеющей отрицательный заряд (чаще всего обозначается M), не совпа-

 $^{^{1}}$ Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации (грант 11.G34.31.0040).

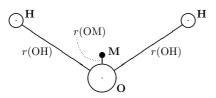


Рис. 1. Модель воды ТІР4Р

дает с положением кислорода, а лежит на биссектрисе угла H-O-H. Модель воды, изображенная на рис. 1, имеет плоскую конфигурацию и содержит 4 связанных частицы, две из которых — обозначенные M и O, ассоциированы с ядром кислорода, и две — обозначенные H — с водородом. Величины, определяющие расстояние между атомами, равны:

$$r_{OH} = 0.957\text{Å}; \ r_{OM} = 0.15\text{Å}; \ \angle_{HOH} = 104.5^{\circ}.$$

Таким образом, заряд кислорода смещается в другую точку, в результате чего кислород распадается на две воображаемых частицы, одна из которых (M) заряжена, но не имеет массы, а другая (O) — не заряжена, однако имеет массу кислорода. Энергия взаимодействия между двумя молекулами i и j представляет собой сумму энергий взаимодействия всех атомов, часть из которых взаимодействуют согласно потенциалу Леннарда—Джонса, а часть — согласно закону Кулона:

$$u_{ij} = \sum_{k \in \{i \setminus O\}} \sum_{l \in \{j \setminus O\}} \frac{q_k q_l}{r_{kl}} + 4\varepsilon_w \left[\left(\frac{\sigma_w}{r_{OO}} \right)^{12} - \left(\frac{\sigma_w}{r_{OO}} \right)^6 \right].$$
 (2)

Соответственно сила взаимодействия имеет следующий вид:

$$\vec{f}_{ij} = \sum_{k \in \{i \setminus O\}} \sum_{l \in \{j \setminus O\}} \frac{q_k q_l}{r_{kl}} \cdot \vec{r}_{ij} + 48\varepsilon_w \left[\left(\frac{\sigma_w^{12}}{r_{OO}^{14}} \right) - \frac{1}{2} \left(\frac{\sigma_w^{6}}{r_{OO}^{8}} \right) \right] \cdot \vec{r}_{ij}$$
(3)

где q_l — это заряд атома l; q_k — заряд атома k и r_{kl} — расстояние между атомами l и k двух различных молекул. Параметры Леннарда–Джонса для этой модели равны $\sigma_w=3.154$ Å и $\varepsilon_w=1.07\cdot 10^{-21}$ Дж, а заряды $q_O=-1.04|e|$ и $q_H=-q_O/2$.

2.2. Модель платины

В данной работе металлическая подложка сделана из платины. Она состоит из атомов, расположенных согласно FCC решетке, и ее поверхность находится в контакте с водой. Константа решетки равна $a_{Pt}=3.92\,$ Å. Взаимодействие атомов

платины описывается потенциалом взаимодействия Леннарда-Джонса:

$$\phi(r_{ij}) = 4\varepsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right]$$
 (4)

с параметрами $\varepsilon=\varepsilon_{ss}=109.25\cdot 10^{-21}$ Дж и $\sigma=\sigma_{ss}=2.54$ Å.

2.3. Модель вода-платина

Потенциал взаимодействия, описывающий взаимодействие воды с платиной, должен удовлетворять как минимум двум условиям. Во-первых, он должен правильно описывать абсорбционные свойства на поверхности молекул платины, которые изучаются при любых исследованиях, связанных с поведением воды на поверхности металла. Вовторых, он должен удовлетворять хотя бы минимальным ориентационным требованиям, атомы кислорода должны подходить ближе к поверхности, чем атомы водорода.

Существует несколько потенциалов, удовлетворяющих вышеизложенным требованиям. Один из из них описана Спором и Хайнцигером [7, 8] в 1988 году. Эта модель может быть использована для точного предсказания структуры и ориентации воды на поверхности платины. Однако, ее притягивающие свойства слишком сильны на поверхности. Использование этой модели не позволяет получить каплю на поверхности металлов, а приводит к образованию тонкой пленки.

Другая модель потенциала была предложена Жу и Филпотом в 1994 году [9]. Потенциальная функция состоит из трех частей:

- 1. электронной проводимости молекул воды;
- 2. ближнего анизотропного взаимодействия;
- 3. ближнего изотропного взаимодействия.

$$\Phi_{H_2O-surf} = \Phi_{H_2O-cond} +
+ \Phi_{an}(O; r_O) + \Phi_{isr}(O; r_O) +
+ \sum_{H} \left[\Phi_{an}(H; r_H) + \Phi_{isr}(H; r_H) \right],$$
(5)

$$\Phi_{H_2O-cond} = \sum_{l,k} \frac{q_l q_k}{2r_{lk}},\tag{6}$$

$$\Phi_{an}(p, r_p) = 4\varepsilon_{p-Pt} \sum_{j} \left[\left(\frac{\sigma_{p-Pt}^2}{(\alpha \rho_{pj})^2 + z_{pj}^2} \right)^6 - \left(\frac{\sigma_{p-Pt}^2}{\left(\frac{\rho_{pj}}{\alpha} \right)^2 + z_{pj}^2} \right)^3 \right],$$
(7)

$$\Phi_{isr}(p, r_p) = -4\varepsilon_{p-Pt} \sum_{j} \frac{c_{p-Pt} \sigma_{p-Pt}^{10}}{r_{pj}^{10}}, \quad (8)$$

где $\alpha=0.8;$ $\sigma_{O-Pt}=2.70$ Å; $\varepsilon_{O-Pt}=6.44\cdot 10^{-21}$ Дж; $c_{O-Pt}=1.28;$ $\sigma_{H-Pt}=2.55$ Å; $\varepsilon_{H-Pt}=3.91\cdot 10^{-21}$ Дж; $c_{H-Pt}=1.20.$

Уравнение (6) представляет собой потенциал Кулоновского взаимодействия между зарядами атомов воды и их отражений, расположенных симметрично относительно поверхности платины.

2.4. Верификация кода

Термин «структура жидкости» весьма распространен. В отличие от кристаллической структуры твердого тела, под структурой жидкости следует понимать статистическую закономерность межмолекулярных расстояний и ориентаций, характерных для любой плотноупакованной системы. Благодаря конечному размеру молекул и силам межмолекулярного взаимодействия, любой жидкости свойственен ближний порядок в расположении частиц и отсутствие дальнего порядка. Отсутствие дальнего порядка означает, что порядок в одном месте никак не действует на порядок в другом. Удобным методом описания структуры простой жидкости является функция радиального распределения, которая может быть рассчитана на основании данных по расстоянию рентгеновских лучей и нейтронов.

Вероятность того, что элемент объема dV в жидкости объема V содержит заданную молекулу, пропорциональна dV/V. Вероятность, что данная пара молекул занимает два таких объема — $(dV/V)^2$ (при этом предполагается, что расстояние r между частицами достаточно велико и их межмолекулярный потенциал мал). Если же расстояние между молекулами приближается к диаметру молекулы d_0 , то объем молекулы и силы межмолекулярного взаимодействия жестко определяют расстояние между молекулами. В этом случае вероятность того, что данная пара занимает два определенных элемента объема, будет равна

$$g(r) \left(\frac{dV}{V}\right)^2$$
,

где g(r) — радиальная функция распределения или поправка к фактору свободного распределения. Вероятность найти какую-либо молекулу в объеме dV на расстоянии r от центра фиксированной молекулы будет равна

$$g(r)\frac{dV}{V}$$
.

Число молекул в сферической области толщины dr (рис. 2) будет равно

$$Ng(r)\frac{dV}{V} = \frac{N}{V}4\pi r^2 dr,$$

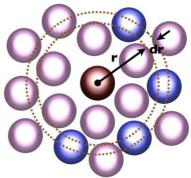


Рис. 2. Пространственная дискретизация для нахождения радиальной функции распределения

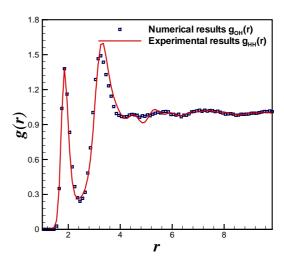


Рис. 3. Радиальная функция распределения g_{OH} для модели TIP4P

где N — число молекул в объеме V, а $dV = 4\pi r^2 dr$.

Исследование структуры жидкости посредством функции радиального распределения было предложено в 1920 г. Дебаем и Менке [10]. Основной способ экспериментального определения функции радиального распределения — анализ картин, полученных с помощью дифракции рентгеновских лучей от изучаемого образца. На рис. 3–5 приведены результаты экспериментального и численного исследований корреляционной функции для молекулы воды. Температура в системе поддерживается постоянной и равной 25° С. Можно заметить, что результаты численного эксперимента хорошо согласуются с известными экспериментальными данными [11], что показывает справедливость рассматриваемой модели и ее реализации.

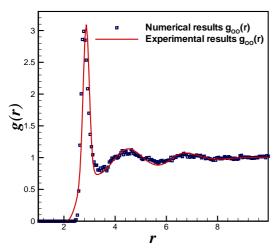


Рис. 4. Радиальная функция распределения g_{OO} для модели TIP4P

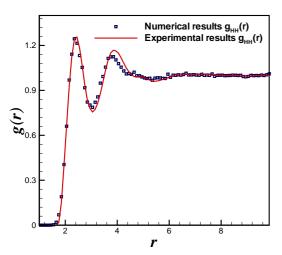


Рис. 5. Радиальная функция распределения g_{HH} для модели TIP4P.

3. Результаты моделирования

Расчеты проводились для системы, содержащей $18\times18\times18$ молекул воды и 5184 молекул платины, распределенных согласно кристаллической решетке FCC <100>. Периодические граничные условия применяются к четырем вертикальным стенкам моделируемой области, а на верхней границе задано условие отражения. Температура в системе поддерживается постоянной, равной $T=350~{\rm K}$. Равновесие в системе достигается за счет использования термостата Берендсена, и в последующем поддерживается термостатом Нозе–Хувера.

Процесс растекания капли представлен на

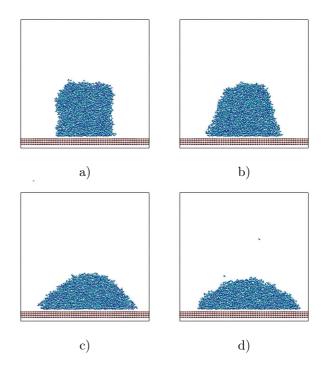


Рис. 6. Капля воды на поверхности платины в различные моменты времени: a) $t=6\,$ пс, b) $t=20\,$ пс, c) $t=50\,$ пс, d) $t=100\,$ пс

рис. 6. Из результатов моделирования видно, что капля принимает полусферическую форму и стоит отметить, что на временах, больших 100 пс, геометрия капли не претерпевает сильных изменений.

4. Заключение

В статье представлены результаты моделирования методом молекулярной динамики для системы «вода-металл-водяной пар». Показано, что примененный метод хорошо согласуется с экспериментальными данными. Приведены результаты численного моделирования процесса растекания капли жидкой воды по поверхности платины. В дальнейшем планируется исследовать зависимость краевого угла смачивания, изучить его зависимость от термодинамических параметров. Дополнить систему растворенным в воде газом и определить, как его наличие будет влиять на поведение системы в целом.

Список литературы

[1] Maruyama S., Kurashge T., Matsuomo S., Yamaguchi Y. and Kimura T. Liquid droplet in contact with a solid surface // Microscale Thermophysical Engineering Journal, 2:49–62, 1998.

- [2] Maruyama S. and Kimura T. A molecular dynamics simulation of a bubble nucleation on solid surface // International Journal of Heat & Technology, 8:69–74, 2000.
- [3] Kimura T. and Maruyama S. Molecular dynamics simulation of heterogeneous nucleation of a liquid droplet on a solid surface // Microscale Thermophysical Engineering, 6:3–13, 2002.
- [4] Barker J.A. and Watts R.O. Structure of water; a monte carlo calculation // Chemical Physics Letters, 3:144II145, 1969.
- [5] Rahman A. and Stillinger F.H. Molecular dynamics study of liquid water // Journal of Chemical Physics, 55:3336-3360, 1971.
- [6] Jorgensen W.L., Chandrasekhar J., Madura J. D., Impey R. W. and Klein M.L. Comparison of simple potential functions for simulating liquid water // Journal of Chemical Physics, 79:926, 1983.

- [7] Heinzinger K. and Spohr E. Computer simulations of water 4metal interfaces // Electrochimica Acta, 34:1849–1856, 1989.
- [8] E. Spohr. Computer simulation of the water/platinum interface // The Journal of Physical Chemistry, 93:6171–6180, 1989.
- [9] S-B. Zhu and M.R. Philpott. Interaction of water with metal surfaces // Technical Report 8, IBM Research Division, Almaden Research Center, San Jose, February 1994.
- [10] Г.Н. Зацепина. Свойства и структура воды. Издательство Московского Университета, 1974.
- [11] A.K. Soper and M.G. Phillips. A new determination of the structure of water at 25c // Chemical Physics, 107:47–60, 1986.