

# Смена симметрии однородной неустойчивости при изменении температуры в стационарном сдвиговом потоке нематика со слабыми граничными условиями в электромагнитном поле<sup>1</sup>

## Насибуллаев И.Ш.

Уфимский государственный авиационный технический университет, Уфа

В работе проводится численное исследование индуцированного изменения температуры переключения симметрии однородной неустойчивости в стационарном сдвиговом потоке нематического жидкого кристалла в электромагнитном поле со слабыми граничными условиями.

# 1. Введение

Нематические жидкие кристаллы (НЖК) представляют собой фазу, промежуточную между твердым телом и жидкостью. Как и твердые тела НЖК обладают анизотропией ряда физических свойств (упругость, двулучепреломление), а как жидкость могут течь. Эти особенности приводят к тому, что НЖК чувствителен к внешним воздействиям (гидродинамические течения, электромагнитные поля, ориентирующее влияние твердой поверхности) и демонстрируют ряд физических явлений, одним их которых является ориентационная неустойчивость — изменение равновесной ориентационной структуры НЖК выше порогового значения внешнего воздействия. Исследование комбинированного воздействия внешних электромагнитных полей и ориентирующего влияния ограничивающей поверхности (слабого сцепления) на устойчивость течения НЖК рассматривалась ранее в теоретической работе [1]. Было показано, что в зависимости от величин внешнего воздействия возможны четыре типа неустойчивости: два вида пространственной структуры (однородная и пространственно-периодическая) могут иметь две различные симметрии возмущений (четная и нечетная). В работе [2] на примере однородной неустойчивости было показано, что температура может влиять на величину порога неустойчивости. В данной работе приводятся результаты расчетов параметров, при которых возможна смена типа однород-



Рис. 1. Геометрия задачи

ной неустойчивости (смена симметрии структурноориентационного перехода) под действием температуры.

## 2. Математическая модель

Рассматривается слой НЖК толщиной d, заключенного между двумя бесконечными параллельными пластинами (рис. 1). Начало декартовой системы координат помещено в центре слоя, ось z направлена перпендикулярно слою. Исследуется ориентационная устойчивость НЖК в сдвиговом стационарном потоке вдоль оси Ox от внешних электрического  $\vec{E}_0$  (направленного перпендикулярно слою, вдоль оси Oz) и магнитного  $\vec{H}_0$  (направленного перпендикулярно плоскости потока Oy) полей и характера поверхностного сцепления в области температур существования нематической фазы ( $T = 20 \div 46.2^{\circ}$  С). Начальная ориентация НЖК  $\vec{n}_0$  перпендикулярна плоскости потока (направлена вдоль оси Oy).

<sup>&</sup>lt;sup>1</sup>Работа выполнена при финансовой поддержке РФФИ (грант № 12–01–97009).

Течение НЖК описывается уравнением Навье–Стокса [3]:

$$\rho\left(\frac{\partial v_i}{\partial t} + v_j \frac{\partial v_i}{\partial x_j}\right) = -p_{,i} + \frac{\partial \Sigma_{ij}}{\partial x_j},\tag{1}$$

где введено обозначение для частной производной  $f_{,i} = \partial f / \partial x_i, p_{,i}$  — компоненты градиента давления;  $\rho$  — плотность НЖК;  $v_i$  — компоненты скорости жидкости.

Тензор вязкости характеризует вязкость жидкости при течении в различных направлениях и содержит 6 коэффициентов вязкости  $\alpha_i$ :

$$\Sigma_{ij} = \alpha_1 n_i n_j A_{km} n_k n_m + \alpha_2 n_i N_j + \alpha_3 n_j N_i + + \alpha_4 A_{ij} + \alpha_5 n_i n_k A_{kj} + \alpha_6 A_{ik} n_k n_j.$$
(2)

Симметричный тензор скорости:

$$A_{ij} = \frac{1}{2} \left( \frac{\partial v_j}{\partial x_i} + \frac{\partial v_i}{\partial x_j} \right).$$
(3)

Скорость изменения ориентации директора:

$$N_i = \frac{\partial n_i}{\partial t} + \frac{\partial n_i}{\partial x_j} v_j + n_j \omega_{ij}.$$
 (4)

Антисимметричный тензор скорости:

$$\omega_{ij} = \frac{1}{2} \left( \frac{\partial v_j}{\partial x_i} - \frac{\partial v_i}{\partial x_j} \right).$$
 (5)

Уравнение непрерывности для несжимаемой жидкости:

div 
$$\vec{v} = 0 \Rightarrow v_{x,x} + v_{y,y} + v_{z,z} = 0.$$
 (6)

Уравнение баланса моментов сил, действующих на директор:

$$I\frac{d}{dt}\left[\vec{n}\times\frac{d\vec{n}}{dt}\right] = [\vec{n}\times\vec{h}^e] - [\vec{n}\times\vec{h}^d],\qquad(7)$$

где *I* — момент инерции.

Упругая  $h^e$  и диссипативная  $h^d$  части молекулярного поля имеют вид:

$$h_i^e = \frac{\partial}{\partial x_j} \frac{\partial F}{\partial n_{i,j}} - \frac{\partial F}{\partial n_i}, \quad h_i^d = \gamma_1 N_i + \gamma_2 A_{ij} \cdot n_j, \quad (8)$$

где  $\gamma_1 = \alpha_3 - \alpha_2, \ \gamma_2 = \alpha_6 - \alpha_5 = \alpha_2 + \alpha_3$  — вращательные вязкости НЖК.

Объемная плотность свободной энерги<br/>иFво внешнем электрическом  $\vec{E}$ и магнитно<br/>м $\vec{H}$ полях имеет вид:

$$F = \frac{1}{2} \{ K_{11} (\nabla \cdot \vec{n})^2 + K_{22} [\vec{n} \cdot (\nabla \times \vec{n})]^2 + K_{33} [\vec{n} \times (\nabla \times \vec{n})]^2 - \varepsilon_0 \varepsilon_a (\vec{n} \cdot \vec{E})^2 - -\mu_o \chi_a (\vec{n} \cdot \vec{H})^2 \}.$$
(9)

Здесь  $K_{ii}$  — константы упругости Франка;  $\varepsilon_a = \varepsilon_{\parallel} - \varepsilon_{\perp}$  — анизотропия диэлектрической проницаемости НЖК ( $\varepsilon_{\parallel}$  и  $\varepsilon_{\perp}$  — диэлектрические проницаемости параллельно и перпендикулярно направлению длинных осей молекул НЖК, соответственно);  $\chi_a = \chi_{\parallel} - \chi_{\perp}$  — анизотропия магнитной восприимчивости;  $\varepsilon_0$  и  $\mu_0$  — диэлектрическая проницаемость и магнитная восприимчивость в вакууме, соответственно [4].

Так как директор представляет собой единичный вектор, записывается условие нормировки:

$$\vec{n}^2 = 1 \Rightarrow n_x^2 + n_y^2 + n_z^2 = 1.$$
 (10)

Граничные условия для скорости определяются условиями прилипания (скорость молекул НЖК на поверхности совпадает со скоростью самой поверхности):

$$v(z = -d/2) = 0, \quad v(z = +d/2) = V_0,$$
 (11)

где  $V_0$  — скорость движения верхней пластины относительно неподвижной нижней.

Граничные условия на ориентацию директора определяются из условия равновесия моментов сил, действующих на директор на ограничивающей поверхности [5]:

$$\pm \frac{\partial F}{\partial(\partial n_i/\partial z)} + \frac{\partial F_s}{\partial n_i} = 0, \qquad (12)$$

где знак «±» соответствует поверхности  $z = \pm d/2$ ; F — объемная плотность свободной энергии;  $F_s$  поверхностная плотность свободной энергии, которая для малых отклонений  $\vec{n}_1 = \vec{n} - \vec{n}_0$  директора  $\vec{n}$  от равновесия  $\vec{n}_0$ , по аналогии с потенциалом Рапини [6], имеет вид:

$$F_s = \frac{1}{2}W_a n_{1x}^2 + \frac{1}{2}W_p n_{1z}^2, \qquad (13)$$

где  $W_a > 0$  — азимутальная сила поверхностного сцепления (характеризующая силу, которую необходимо приложить к директору для его поворота в плоскости твердой поверхности) и  $W_p > 0$  — полярная сила поверхностного сцепления (характеризующая силу, которую необходимо приложить к директору для его отклонения от плоскости твердой поверхности).

#### 2.1. Базовое течение

Базовое состояние системы определим таким образом, чтобы директор был ориентирован перпендикулярно плоскости потока:

$$\vec{n}_0 = (0, 1, 0).$$
 (14)

Базовая скорость имеет только компоненту  $v_x$ и зависит от z (плоское параллельное течение):

$$\vec{v}_0(z) = (v_{0x}(z), 0, 0).$$
 (15)

В случае сдвигового потока давление постоянно (и равно атмосферному давлению с открытых концов ячейки), то есть  $p_{,x} \equiv 0$ . Таким образом, решение с учетом граничных условий (11) имеет вид:

$$v_{0x} = V_0 \left(\frac{z}{d} + \frac{1}{2}\right).$$
 (16)

## 2.2. Линейный анализ устойчивости

Линейный анализ устойчивости позволяет определить пороговое значение параметров системы, при которых течение становится неустойчивым относительно бесконечно малых возмущений.

Ищем решения в следующем виде:

$$\vec{n}(z) = \vec{n}_0 + \vec{n}_1(z), \quad \vec{v}(z) = \vec{v}_0(z) + \vec{v}_1(z), \quad (17)$$

где  $\vec{n}_0$  и  $\vec{v}_0(z)$  — базовое состояние (14), (15) и  $\vec{n}_1(z)$ ,  $\vec{v}_1(z)$  — малые возмущения.

Для однородных (вдоль оси Оу) возмущений:

$$\vec{n}_1(z) = \{ n_{1x}(z), n_{1y}(z), n_{1z}(z) \}, \vec{v}_1(z) = \{ v_{1x}(z), v_{1y}(z), v_{1z}(z) \}.$$
(18)

Подставляя (17) в систему уравнений (1), (7) и граничные условия (11), (12) и линеаризуя полученные выражения относительно малых параметров компонент  $\vec{n}_1$  и  $\vec{v}_1$ , получаем уравнения на бесконечно малые возмущения, содержащие градиент сдвига  $v_{0x,z}$ . Порогу ориентационной неустойчивости соответствует значение  $v_{0x,z}$ , при котором существует нетривиальное решение для  $\{\vec{n}_1, \vec{v}_1\}$ . Пороговое значение  $v_{0x,z}$  зависит от параметров системы, определяемых внешними воздействиями и условиями (характера поверхностного сцепления, величины напряженности внешнего поля, температуры).

Для того чтобы определить характерные параметры системы и упростить запись уравнений, перепишем математическую модель в безразмерной форме. В качестве характерного расстояния выберем толщину слоя d, в качестве характерного времени — характерное время релаксации директора  $\tau_d = \frac{(-\alpha_2)d^2}{K_{22}}$ . В безразмерном виде компоненты директора и скорости (с тильдами) имеют вид:

$$n_{1x} = \tilde{n}_{1x}, n_{1z} = \tilde{n}_{1z},$$
$$v_{1x} = \frac{d}{\tau_d} \tilde{v}_{1x}, v_{1z} = \frac{d}{\tau_d} \tilde{v}_{1z}, \partial_z = \frac{1}{d} \partial_{\tilde{z}}$$

Чтобы получить более компактную систему уравнений, используем следующие афинные преобразования:

$$\begin{split} \tilde{n}_{1x} &= \frac{N_{1x}}{\beta}; \tilde{n}_{1z} = N_{1z}; \\ \tilde{v}_{1x} &= \frac{V_{1x}}{\beta^2}; \ \tilde{v}_{1z} = \frac{V_{1z}}{\beta^2 \eta_{23}}; \ \beta^2 = \frac{K_{22}}{K_{11}} \frac{\alpha_3}{\alpha_2} \frac{\eta_3}{\eta_1} \end{split}$$

Введем безразмерные коэффициенты вязкости и упругости:

$$\eta_{13} = \frac{\eta_1}{\eta_3}; \eta_{31} = \frac{\eta_3}{\eta_1}; \eta_{42} = \frac{\eta_4}{\eta_2}; \eta_{53} = \frac{\eta_5}{\eta_3};$$
$$\alpha_{23} = \frac{\alpha_2}{\alpha_3}; k_{21} = \frac{K_{22}}{K_{11}}; k_{31} = \frac{K_{33}}{K_{11}}; k_{32} = \frac{K_{33}}{K_{22}}$$

Введем безразмерные поля и характеристические величины:

$$e = sgn(\varepsilon_a) \frac{\pi^2 E_0^2}{E_F^2}; h = \frac{\pi^2 H_0^2}{H_F^2};$$
$$E_F = \frac{\pi}{d} \sqrt{\frac{K_{11}}{|\varepsilon_a|\varepsilon_0}}; H_F = \frac{\pi}{d} \sqrt{\frac{K_{22}}{\mu_0 \chi_a}}; \tau_v = \frac{\rho d^2}{\eta_3}$$

где  $E_F$ ,  $H_F$  — поля перехода Фредерикса для жесткого сцепления;  $\tau_v$  — характерное время релаксации скорости.

Граничные условия перепишем в виде:

$$v_{1y}(z = \pm d/2) = 0,$$
  

$$\pm \frac{K_{22}}{W_a} n_{1x,\tilde{z}} + n_{1x} = 0,$$
  

$$\pm \frac{K_{11}}{W_n} n_{1z,\tilde{z}} + n_{1z} = 0.$$
(19)

Для характеристики компонент силы поверхностного сцепления введем безразмерные величины  $\beta_a = \frac{K_{22}}{W_a d}, \beta_p = \frac{K_{11}}{W_p d}$  — отношения характеристической длины компоненты силы поверхностного сцепления  $\frac{K_{ii}}{W_j}$  к толщине слоя d.  $\beta_i = 0$  соответствует идеальному жесткому сцеплению (ориентация НЖК на поверхности фиксирована),  $\beta_i = \infty$  — идеальному слабому сцеплению (т.е. поверхность не оказывает ориентирующего воздействия на НЖК), а конечные значения  $\beta_i$  — реальному слабому сцеплению (отклонение ориентации молекул НЖК на поверхности от равновесного значения возрастает с ростом возмущения).

Контрольным безразмерным параметром для градиента скорости сдвига будет  $a^2 = \frac{\beta \tau_d V_0}{d}$ .

Окончательные уравнения в безразмёрном виде (для удобства тильды опускаем):

$$V_{1y,zz} + (\eta_{23} - 1)(a^2 N_{1x})_{,z} = 0,$$
  
$$-a^2 N_{1z} - N_{1x,zz} + h N_{1x} = 0,$$
  
$$(\partial_z^2 + e - k_{21}h) N_{1z} + V_{1y,z} + a^2 \eta_{23} N_{1x} = 0.$$
  
(20)

Граничные условия:

$$V_{1y}(z = \pm 1/2) = 0,$$
  
$$\pm \beta_a N_{1x,z} + N_{1x} = 0, \ \pm \beta_p N_{1z,z} + N_{1z} = 0.$$
 (21)

#### 2.3. Симметрия однородных неустойчивостей

Проводим анализ симметрий решений системы (20) с граничными условиями (21) относительно преобразования  $z \to -z$ . Обозначим как «четное» решение, решение с четной симметрией компоненты  $N_{1x}$ , «нечетное» — соответственно с нечетной симметрией этой компоненты. Симметрия остальных компонент определяется однозначно из уравнений для заданной симметрии одной из компонент.

Нечетное решение имеет вид:

$$N_{1x} = C_1 \operatorname{sh}(\xi_1 z) + C_2 \sin(\xi_2 z),$$
  

$$N_{1z} = C_3 \operatorname{sh}(\xi_1 z) + C_4 \sin(\xi_2 z),$$
  

$$V_{1y} = C_5 \operatorname{ch}(\xi_1 z) + C_6 \cos(\xi_2 z) + C_7.$$
(22)

После подстановки (22) в систему (20) и граничные условия (21), получаем выражение для порогового напряжения сдвига:

$$(\pi^{2}h + \xi_{2}^{2})(\xi_{1}\beta_{a}\operatorname{ch}(\xi_{1}/2) + \operatorname{sh}(\xi/2)) \times \\ \times (\xi_{2}\beta_{p}\cos(\xi_{2}/2) + \sin(\xi_{2}/2)) - \\ -(\pi^{2}h - \xi_{1}^{2})(\xi_{2}\beta_{a}\cos(\xi_{2}/2) + \sin(\xi_{2}/2)) \times \\ \times (\xi_{1}\beta_{p}\operatorname{ch}(\xi_{1}/2) + \operatorname{sh}(\xi_{1}/2)) = 0,$$
(23)

где:

$$\begin{split} \xi_1^2 &= \frac{\pi^2}{2k_{12}} \Biggl\{ [(1+k_{12})h - k_{12}e] + \\ &+ \sqrt{[(1-k_{12})h - k_{12}e]^2 + 4k_{12}^2 \frac{a^4}{\pi^4}} \Biggr\}, \\ \xi_2^2 &= \frac{\pi^2}{2k_{12}} \Biggl\{ -[(1+k_{12})h - k_{12}e] + \\ &+ \sqrt{[(1-k_{12})h - k_{12}e]^2 + 4k_{12}^2 \frac{a^4}{\pi^4}} \Biggr\} \end{split}$$
(24)  
H  $k_{12} &= \frac{K_{11}}{K_{22}}. \end{split}$ 

Решение четного типа имеет вид:

$$N_{1x} = C_1 \operatorname{ch}(\xi_1 z) + C_2 \cos(\xi_2 z) + C_3,$$
  

$$N_{1z} = C_4 \operatorname{ch}(\xi_1 z) + C_5 \cos(\xi_2 z) + C_6,$$
  

$$V_{1y} = C_7 \operatorname{sh}(\xi_1 z) + C_8 z.$$
(25)

После подстановки (25) в систему (20) и граничные условия (21) пороговое значение напряжения сдвига находится из условия существования нетривиального решения:

$$\begin{vmatrix} 1 & \pi^2 h & f_0 \\ f_1 & f_2 & f_3 \\ f_4 & f_5 & f_6 \end{vmatrix} = 0,$$
(26)

где:

$$f_{0} = \frac{\eta_{13}}{2} \left( \frac{\pi^{4}h(h-ke)}{a^{4}k\eta_{13}} - 1 \right),$$
  

$$f_{1} = -\xi_{2}\beta_{a}\sin(\xi_{2}/2)\cos(\xi_{2}/2),$$
  

$$f_{2} = (\pi^{2}h + \xi_{2}^{2})[-\xi_{2}\beta_{p}\sin(\xi_{2}/2) + \cos(\xi_{2}/2)],$$
  

$$f_{3} = \frac{1-\eta_{13}}{\xi_{2}}\sin(\xi_{2}/2),$$
  

$$f_{4} = \xi_{1}\beta_{a}\sin(\xi_{1}/2) + ch(\xi_{1}/2),$$
  

$$f_{5} = (\pi^{2}h - \xi_{1}^{2})[\xi_{1}\beta_{p}\sin(\xi_{1}/2) + ch(\xi_{1}/2)],$$
  

$$f_{6} = \frac{1-\eta_{13}}{\xi_{1}}\sin(\xi_{1}/2).$$

Из условия существования нетривиального решения получаем трансцендентное выражение, содержащее параметр  $a^2 = a^2(e;h;\beta_a;\beta_p)$  — безразмерная скорость сдвига, зависящая от величин электрического и магнитного полей и компонент силы поверхностного сцепления. Решение этого уравнения относительно  $a^2$  дает нам пороговое значение  $a_c^2$ , при котором базовое состояние теряет устойчивость. Из двух типов решений реализуется только то, которое соответствует наименьшему порогу  $a_c^2$ .

#### 3. Результаты

Расчеты порога неустойчивости проводились для материальных параметров НЖК МББА в температурном диапазоне существования нематической фазы  $T = 20 \div 46, 2^{\circ}$  С. Температурные зависимости для коэффициентов упругости  $K_{ii}$  были взяты из работы [7]. Экспериментальные данные по измерению коэффициентов вязкости  $\alpha_i$  [8] были нами обработаны методом наименьших квадратов для получения функциональной зависимости  $\alpha_i(T)$  в виде многочленов 4-го порядка (отличие  $\alpha_i(T)$  в



Рис. 2. Зависимость  $a_c^2$  для однородной четной (-) и нечетной (--) неустойчивости от температуры T в магнитном поле  $(H_0/H_F=3,5-$ черная линия,  $H_0/H_F=3,6-$ серая линия) для компонент сцепления  $\beta_a=1, \beta_p=0,01$ 

экспериментальных точках не превышает 5%):

$$\begin{split} &\alpha_1 = 0,033 - 0,0085T + 4,4 \cdot 10^{-4}T^2 - \\ &-9,2 \cdot 10^{-6}T^3 + 7,1 \cdot 10^{-8}T^4, \\ &\alpha_2 = -0,424 + 0,0145T + 1,46 \cdot 10^{-4}T^2 - \\ &-1,29 \cdot 10^{-5}T^3 + 1,55 \cdot 10^{-7}T^4, \\ &\alpha_3 = 0,019 - 0,0028T + 1,47 \cdot 10^{-4}T^2 - \\ &-3,49 \cdot 10^{-6}T^3 + 3,03 \cdot 10^{-8}T^4, \\ &\alpha_4 = 0,439 - 0,0312T + 0,0011T^2 - \\ &-1,81 \cdot 10^{-5}T^3 + 1,23 \cdot 10^{-7}T^4, \\ &\alpha_5 = 0,214 + 0,0012T - 0,00069T^2 + \\ &+2,23 \cdot 10^{-5}T^3 - 2,21 \cdot 10^{-7}T^4, \\ &\alpha_6 = -0,197 + 0,0138T - 4,33 \cdot 10^{-4}T^2 + \\ &+6,79 \cdot 10^{-6}T^3 - 4,21 \cdot 10^{-8}T^4. \end{split}$$

Под действием электрического поля  $E_0$  пороги неустойчивости возрастают, но порог неустойчивости четного типа всегда ниже порога для неустойчивости нечетного типа во всей рассматриваемой температурной области и во всем диапазоне компонент сил поверхностного сцепления.

В магнитном поле возможна смена типа неустойчивости [1] при изменении величины магнитного поля  $H_0$  и компонент сил поверхностного сцепления  $\beta_a$  и  $\beta_p$ . На рис. 2 показана смена симметрии структурно-ориентационного перехода при



Рис. 3. Зависимость  $a_c^2$  для однородной четной (-) и нечетной (--) неустойчивости от температуры T в магнитном поле  $(H_0/H_F=3,5-$ черная линия,  $H_0/H_F=3,6-$ серая линия) для компонент сцепления  $\beta_a=0,01,\ \beta_p=1$ 

заданных  $H_0$ ,  $\beta_a$  и  $\beta_p$  вызванная изменением температуры. Для слабого азимутального  $\beta_a = 1$  и жесткого полярного  $\beta_p = 0,01$  сцепления в магнитном поле с ростом температуры четная однородная неустойчивость сменяется однородной неустойчивость нечетного типа. С ростом величины магнитного поля смена типа неустойчивости происходит при более высоком значении температуры. Отметим, что величина порога нечетного типа неустойчивости сильно зависит от температуры (уменыпается с ростом температуры), в то время как порог неустойчивости четного типа при изменении температуры меняется слабо.

рис. 3 показана смена симметрии Ha структурно-ориентационного перехода для тех же параметров, что на рис. 2, но с жестким азимутальным сцеплением  $\beta_a = 0,01$  и слабым полярным сцеплением  $\beta_p = 1$ . Видно, что смена компонент сил поверхностного сцепления приводит к уменьшению пороговой амплитуды скорости  $a_c^2$  для нечетного типа неустойчивости (пороговое значение  $a_c^2$  для четного типа неустойчивости практически не изменилось), в результате увеличивая значение температуры  $T_c$ , при которой происходит смена симметрии неустойчивости. Таким образом, можно получить зависимость  $T_c(\beta_a, \beta_p)$  и из сравнения с результатами эксперимента определить компоненты силы поверхностного сцепления.

# 4. Заключение

В работе было проведено исследование влияния температуры на смену симметрии неустойчивости в стационарном сдвиговом потоке НЖК под действием электромагнитного поля и температуры. Было получено, что смена симметрии однородной неустойчивости под действием температуры возможна в магнитном поле. Асимметрия зависимости критической температуры  $T_c$  от компонент силы поверхностного сцепления  $\beta_a$  и  $\beta_p$  может быть использована для экспериментального определения  $\beta_a$  и  $\beta_p$ .

# Список литературы

- Nasibullayev I.Sh. Orientational instabilities in nematic liquid crystals with weak anchoring under combine action of steady flow and external fields /I.Sh. Nasibullayev, O.S. Tarasov, A.P. Krekhov et al. // Phys. Rev. E. 2005. Vol. 72. P. 051706-1–10.
- [2] Насибуллаев И.Ш. Влияние температуры на однородные неустойчивости в стационарном сдвиговом потоке нематического жидкого кристалла с нежесткими граничными условиями / И.Ш. Насибуллаев, О.В. Юрина // Труды Института механи-

ки УНЦ РАН. Вып.7 / Под ред. С.Ф. Урманчеева. Уфа: Гилем, 2010. С. 191–201.

- [3] Де Жен, П. Физика жидких кристаллов. М.: Мир, 1977. 400 с.
- [4] Пикин С.А. Структурные превращения в жидких кристаллах. М.: Наука, 1981. 336 с.
- [5] Kedney P.J., Leslie F.M. Switching in a simple bistable nematic cell // Liq. Cryst. V. 24. I. 9. 1998. Pp. 613–618.
- [6] Rapini A., Papoular M. Distorsion d'une lamelle nématique sous champ magnétique conditions d'ancrage aux parois // Liq. Cryst. 1998. V. 24. P. 613–618.
- [7] Leenhouts F. Elastic constants of nematic liquid crystalline Schiff's bases /F. Leenhouts, A.J. Dekker // J. Chem. Phys. 1981. V. 74, № 3. P. 1956–1965.
- [8] Wang H. A method to estimate the Leslie coefficients of liquid crystals based on MBBA data /H. A Wang, Th. X. Wu, S. Gauza et al. // Liquid Crystals. 2006. Vol. 33, № 1. P. 91–98.