

Отражение короткой изгибной бегущей волны от распределенной массы, прикрепленной к трубопроводу¹

Хакимов А.Г.

Институт механики им. Р.Р. Мавлютова УНЦ РАН, Уфа

Исследуется отражение от распределенной массы, прикрепленной к трубопроводу, и прохождение короткой изгибной бегущей волны. Получена зависимость решения от начальной координаты распределенной массы и ее величины. Решение обратной задачи позволяет определить начальную координату распределенной массы и ее величину по данным отраженной волны в точке наблюдения.

1. Введение

В протяженных объектах типа магистральных трубопроводных систем не все участки могут быть доступны для визуального осмотра и приборного диагностирования [1]. В статье [2] предлагается метод, позволяющий вычислить местоположение и объем двух полостей в стержне по собственным частотам изгибных колебаний. Рассматривается случай шарнирного закрепления концов стержня. Полость моделируется отрицательной сосредоточенной массой. В работе [3] предложен метод отрицательной массы, на основе которого получены новые результаты определения местоположения и объема дефекта стержня в виде малой полости по собственным частотам изгибных колебаний. Применение метода не зависит от формы полости. Величина объема полости моделируется абсолютной величиной отрицательной сосредоточенной массы стержня. В связи с этим сочетание приборного диагностирования в доступном месте (точке наблюдения) и моделирования отраженных волн от удаленной точечной воздушной полости представляет определенный интерес.

2. Постановка задачи

Предполагается, что из удаленной точки трубопровода круглого поперечного сечения радиусом R слева направо распространяется короткая изгибная волна смещения, амплитуда и круговая частота которой в точке наблюдения O с координатой x = 0

Рис. 1. Расчетная схема

равны W и ω . Принято, что затухающая часть волны равна нулю. В трубопроводе с жидкостью в точке с координатой x_c прикрепляется распределенная масса m_l (рис. 1). Требуется определить отраженную и проходящую волны по известной распределенной массе и ее начальной координате, а также начальную координату распределенной массы и ее величину по отраженной волне в точке наблюдения.

Уравнения Тимошенко, учитывающие инерцию вращения и сдвиг, имеют вид [4]:

....

$$\frac{\partial M}{\partial x} - Q - \rho J \frac{\partial^2 \psi}{\partial t^2} = 0,$$

$$\frac{\partial Q}{\partial x} + (\rho F + \rho_i F_i) \frac{\partial^2 w}{\partial t^2} = 0, F = \pi (R^2 - R_i^2), \quad (1)$$

$$F_i = \pi R_i^2, J = \pi (R^4 - R_i^4)/4,$$

<u>_</u>,

где t— время; M и Q— изгибающий момент и перерезывающая сила; ρ, F, R, J — плотность, площадь, наружный радиус и момент инерции поперечного сечения трубопровода; ρ_i, F_i, R_i — плотность жидкости, площадь сечения «в свету» и внутренний радиус трубопровода; w— прогиб; ψ — угол поворота сечения при изгибе. Из закона Гука следуют выражения:

$$M = EJ\frac{\partial\psi}{\partial x}, \quad Q = -GF\left(\frac{\partial w}{\partial x} - \psi\right), \qquad (2)$$

¹Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 11-01-97003 _p_поволжье).

причем выше и здесь под G подразумевается значение модуля сдвига, умноженное на коэффициент k' распределения напряжения в поперечном сечении, E — модуль упругости.

Уравнения (1) с учетом соотношений (2) можно записать относительно функции прогиба:

$$\frac{\partial^4 w}{\partial x^4} + \frac{F\eta_k}{Jc_l^2} \frac{\partial^2 w}{\partial t^2} - \frac{1+\gamma_k}{c_l^2} \frac{\partial^4 w}{\partial x^2 \partial t^2} + \frac{\gamma_k}{c_l^4} \frac{\partial^4 w}{\partial t^4} = 0,$$

$$\gamma_k = \frac{c_l^2}{c_s^2} \eta_k, \ \eta_1 = 1 + \frac{\rho_i F_i}{\rho F},$$

$$\eta_2 = 1 + \frac{\rho_i F_i + m_l}{\rho F}.$$
(3)

где $c_l = \sqrt{E/\rho}$, $c_s = \sqrt{G/\rho}$ — скорости распространения волн растяжения-сжатия и волн сдвига. При этом выражения (2) приобретают вид:

$$M = EJ\left(\frac{\partial^2 w}{\partial x^2} - \frac{\gamma}{c_s^2}\frac{\partial^2 w}{\partial t^2}\right),$$

$$Q = EJ\frac{\partial^3 w}{\partial x^3} - \frac{EJ(\rho F + \rho_i F)}{GF}\frac{\partial^3 w}{\partial x \partial t^2} - \rho J\frac{\partial^2 \psi}{\partial t^2}.$$
(4)

Принимая функцию w в виде $\exp(i\omega t + \tilde{\alpha}_k x)$, из (3) получаем характеристическое уравнение относительно $\tilde{\alpha}_k$, корни которого равны $\pm i\alpha_k$, $\pm \beta_k$, причем

$$\alpha_{k} = \omega \left[\frac{1 + \gamma_{k}}{2c_{l}^{2}} + \left(\frac{(1 - \gamma_{k})^{2}}{4c_{l}^{4}} + \frac{F\eta_{k}}{J\omega^{2}c_{l}^{2}} \right)^{\frac{1}{2}} \right]^{\frac{1}{2}} = \frac{2\pi}{L}$$
$$\beta_{k} = \omega \left[\left(\frac{(1 - \gamma_{k})^{2}}{4c_{l}^{4}} + \frac{F\eta_{k}}{J\omega^{2}c_{l}^{2}} \right)^{\frac{1}{2}} - \frac{1 + \gamma_{k}}{2c_{l}^{2}} \right]^{\frac{1}{2}}.$$

Решение уравнения (3) принимает вид для участков 1 и 2:

$$w_k = e^{i\omega t} (A_k e^{i\alpha_k x} + B_k e^{-i\alpha_k x} + C_k e^{\beta_k x} + D_k e^{-\beta_k x}), \quad k = 1, 2...$$

Ограниченное решение, удовлетворяющее условию отсутствия отраженных вол
н(A=C=0),записывается

$$w_k = B_k e^{+i(\omega t - \alpha_k x)} + D_k e^{i\omega t - \beta_k x}.$$

Условия стыкования решений при $x = x_c$ (условия равенства перемещений, углов поворота ψ , изгибающих моментов M, перерезывающих сил Q):

$$w_2 = w_1, \ \psi_2 = \psi_1, \ M_2 = M_1, \ Q_2 = Q_1.$$
 (5)

Условия (5) с учетом (2), (4) записываются в виде:

$$w_{2} = w_{1}, \quad \frac{\partial w_{2}}{\partial x} = \frac{\partial w_{1}}{\partial x},$$

$$\frac{\partial^{2} w_{2}}{\partial x^{2}} - \frac{1}{c_{s}^{2}} \frac{\partial^{2} w_{2}}{\partial t^{2}} = \frac{\partial^{2} w_{1}}{\partial x^{2}} - \frac{1}{c_{s}^{2}} \frac{\partial^{2} w_{1}}{\partial t^{2}},$$

$$\frac{\partial w_{2}^{3}}{\partial x^{3}} - \frac{(\rho F + \rho_{i} F + m_{l})}{GF} \frac{\partial^{3} w_{2}}{\partial x \partial t^{2}} =$$

$$= \frac{\partial w_{1}^{3}}{\partial x^{3}} - \frac{(\rho F + \rho_{i} F)}{GF} \frac{\partial^{3} w_{1}}{\partial x \partial t^{2}}, \quad x = x_{c},$$
(6)

Поперечное перемещение в трубопроводе задается в виде незатухающей бегущей изгибной волны

$$w = W\sin(\omega t - \alpha_1 x). \tag{7}$$

3. Прямая задача

Пользуясь в дальнейшем обозначениями

$$\tau = \omega t, \quad \xi = \frac{2\pi x}{L}, \quad \xi_c = \frac{2\pi x_c}{L}, \quad \eta_{22} = \frac{L^2 \omega^2}{c_s^2}, \\ \eta_{31} = \frac{(\rho F + \rho_i F) L^2 \omega^2}{GF}, \quad \eta_{32} = \eta_{31} + \chi, \\ \chi = \frac{m_l L^2 \omega^2}{GF}, \quad \tilde{w}_k = \frac{w_k}{W}, \end{cases}$$

представим (6) в виде (в дальнейшем тильда над w опускается):

$$w_{2} = w_{1}, \quad \frac{\partial w_{2}}{\partial \xi} = \frac{\partial w_{1}}{\partial \xi},$$

$$\frac{\partial^{2} w_{2}}{\partial \xi^{2}} - \eta_{22} \frac{\partial^{2} w_{2}}{\partial \tau^{2}} = \frac{\partial^{2} w_{1}}{\partial \xi^{2}} - \eta_{2} \frac{\partial^{2} w_{1}}{\partial \tau^{2}},$$

$$\frac{\partial^{3} w_{2}}{\partial \xi^{3}} - (\eta_{31} + \chi) \frac{\partial^{3} w_{2}}{\partial \xi \partial \tau^{2}} =$$

$$\frac{\partial^{3} w_{1}}{\partial \xi^{3}} - \eta_{31} \frac{\partial^{3} w_{1}}{\partial \xi \partial \tau^{2}}, \quad \xi = \xi_{c}.$$
(8)

Таким образом, в приведенной простейшей модели трубопровода с присоединенной массой фигурируют ее координата ξ_c и параметр χ для распределенной массы.

Представим (7) в виде

$$w_i = \sin(\tau - \xi), \quad -\infty \le \xi \le \xi_c. \tag{9}$$

Решение (2) имеет вид:

$$w_r = A_r \cos(\tau + \xi) + B_r \sin(\tau + \xi) + e^{-\beta_1(\xi_c - \xi)/\alpha_1} (C_r \cos \tau + D_r \sin \tau), \qquad (10)$$
$$-\infty \le \xi \le \xi_c,$$

$$w_{i1} = A_{i1} \cos(\tau - \alpha_2 \xi / \alpha_1) + B_{i1} \sin(\tau - \xi) + e^{-\beta_2(\xi - \xi_c) / \alpha_1} (C_{i1} \cos \tau + D_{i1} \sin \tau), \qquad (11)$$

$$\xi_c < \xi \le \infty.$$

Так как при $\xi \leq \xi_c$ выполняются равенства $w_1 = w_i + w_r$, а при $\xi > \xi_c$ — равенства $w_2 = w_{i1}$,

Рис. 2. Перемещения стержня в отраженной волне для начальной координаты распределенной массы $\xi_c = 20\pi/3$ (a), $\xi_c = 40\pi/3$ (b) при различных m_l

из условий (8) с учетом соотношений (9)–(11) следует система уравнений, решение которой здесь не приводится. При $\chi = 0$ волна, не отражаясь, проходит далее. Решения (10), (11) можно представить также в виде:

$$w_{r} = k_{r} \sin \left((\tau + \xi) - \phi_{r} \right) + k_{r1} e^{-\beta_{1}(\xi_{c} - \xi)/\alpha_{1}} \times \\ \times \sin(\tau - \phi_{r1}), \quad -\infty \le \xi \le \xi_{c}, \\ w_{i1} = k_{i1} \sin \left((\tau - \xi) - \phi_{i1} \right) + k_{i2} e^{-\beta_{2}(\xi - \xi_{c})/\alpha_{1}} \times \\ \times \sin(\tau - \phi_{i2}), \quad \xi_{c} < \xi \le \infty, \end{cases}$$

где k_r , k_{r1} и k_{i1} , k_{i2} — коэффициенты отражения и прохождения; ϕ_r , ϕ_{r1} и ϕ_{i1} , ϕ_{i2} — соответствующие фазы:

$$k_r = \sqrt{A_r^2 + B_r^2}, \quad k_{r1} = \sqrt{C_r^2 + D_r^2}, \\ k_{i1} = \sqrt{A_{i1}^2 + B_{i1}^2}, \quad k_{i2} = \sqrt{C_{i1}^2 + D_{i1}^2}, \\ \phi_r = \arctan(-A_r/B_r), \quad \phi_{r1} = \arctan(-C_r/D_r), \\ \phi_{i1} = \arctan(-A_{i1}/B_{i1}), \quad \phi_{i2} = \arctan(-C_{i1}/D_{i1}).$$

Перемещение w_r элемента стержня в точке наблюдения ($\xi = 0$), выраженное через амплитуду и фазу δ волны, имеет вид:

$$w_r = A_r \cos \tau + B_r \sin \tau + e^{-\beta_1 \xi_c / \alpha_1} \times (C_r \cos \tau + D_r \sin \tau) = C \sin(\tau - \delta),$$

$$C = \sqrt{C_1^2 + C_2^2}, \tan \delta = -C_1 / C_2,$$

где обозначено

$$C_1 = A_r + C_r e^{-\beta_1 \xi_c / \alpha_1}, \ C_2 = B_r + D_r e^{-\beta_1 \xi_c / \alpha_1}.$$

Суммарное перемещение w_s элемента стержня в точке наблюдения ($\xi = 0$), выраженное через амплитуду * и фазу δ^* волны:

$$w_s = w_i + w_r = \sin \tau + A_r \cos \tau + B_r \sin \tau + + e^{-\beta_1 \xi_c / \alpha_1} (C_r \cos \tau + D_r \sin \tau) = C^* \sin(\tau - \delta^*), C^* = \sqrt{C_1^2 + C_2^{*2}}, \tan \delta^* = -C_1 / C_2^*,$$

где $C_2^* = 1 + B_r + D_r e^{-\beta_1 \xi_c / \alpha_1}$.

Решение проведено численно для следующих параметров системы: $E = 2 \cdot 10^{11}$ Па, $G = 0.77 \cdot 10^{11}$ Па, $\rho = 7800$ кг/м³, $\rho_i = 1000$ кг/м³, $R_i = 0.259$ м, R = 0.265 м, $m_l = 100$ кг/м, $\omega = 100$ с⁻¹, $x_c = 20\pi/3$ м. Параметры отраженной волны следующие: $A_r = 0.021029$, $B_r = 0.009465$, $C_r = 0.046190$, $D_r = 0.002168$.

6

На рис. 2 даются зависимости перемещения элемента стержня в отраженной волне от безразмерного времени τ для двух значений начальной координаты распределенной массы: $\xi_c = 20\pi/3$ (фрагмент а), $\xi_c = 40\pi/3$ (фрагмент б) $\xi = 0$ и различных m_l (100; 200; 300 кг/м). Видно, что отраженные волны зависят от величины распределенной массы m_l и ее начальной координаты ξ_c . Чем больше величина распределенной массы m_l , тем больше величина сигнала в отраженной волне.

Зависимости сдвига фазы в отраженной волне от начальной координаты распределенной массы ξ_c при различных m_l (100; 200; 300 кг/м) представлены на рис. 3(а), а от интенсивности распределенной массы m_l для различных значений ξ_c даются на рис. 3(б). Анализ показывает, что сдвиг фазы в отраженной волне зависит от начальной координаты распределенной массы ξ_c и ее интенсивности. Таким образом, сдвиг фазы в отраженной волне можно использовать для определения начальной координаты распределенной массы и ее величины.

Рис. 4 содержит зависимости коэффициента отражения C от интенсивности распределенной массы m_l для различных значений ξ_c (фрагмент а) и от координаты ξ_c для интенсивностей распределенной массы m_l (100; 200; 300 кг/м) (фрагмент б). С ростом интенсивности распределенной массы m_l происходит увеличение коэффициента отражения C.

Рис. 3. Зависимости сдвига фазы в отраженной волне от начальной координаты распределенной массы ξ_c (а) при различных m_l (100; 200; 300 кг/м) и от интенсивности распределенной массы m_l (б) для различных значений ξ_c

Рис. 4. Зависимости коэффициента отражения C от начальной координаты распределенной массы ξ_c (а) при различных m_l (100; 200; 300 кг/м) и от интенсивности распределенной массы m_l (б) для различных значений ξ_c

4. Обратная задача

Могут быть использованы различные способы [5] определения начальной координаты распределенной массы и ее интенсивности в зависимости от измеряемых характеристик волны с помощью приборных средств. Рассмотрим только один способ: выделение отраженной волны и использование данных измерений перемещений в два момента времени. Могут быть и другие способы выделения отраженных волн. Если обозначить через $(w_r)_1$ и $(w_r)_2$ замеренные значения перемещения в отраженной волне в точке $\xi = 0$ в моменты времени τ_1 и τ_2 в пределах полупериода колебания, причем, для простоты принять $\tau_1 = 0$, $\tau_2 = \pi/2$, то из (10) последует система уравнений:

$$(w_r)_1 = A_r + C_r e^{-\beta_1(\xi_c - \xi)/\alpha_1}, (w_r)_2 = B_r + D_r e^{-\beta_1(\xi_c - \xi)/\alpha_1}.$$
 (12)

Например, решение прямой задачи для вышеприведенных данных и $\xi_c = 2\pi/3$, $m_l = 100$ кг/м дает, что $(w_r)_1 = 0.0268385071$, $(w_r)_2 = -0.009193060821$.

Параметры ξ_c , m_l определяются из (12) при заданных значениях $(w_r)_1$, $(w_r)_2$. Система (12) может быть решена численно. Например, для $(w_r)_1 =$ 0.0268, $(w_r)_2 = -0.0091$ решение системы уравнений дает, что $\xi_c = 2.096$; $m_l = 99.805$.

На рис. 5 приводятся зависимости начальной координаты распределенной массы ξ_c (а) и ее интенсивности m_l (б) от $(w_r)_1$ для различных значений $(w_r)_2$. Вычисления показывают, что по двум замеренным значениям $(w_r)_1$, $(w_r)_2$ определяются начальная координата распределенной массы ξ_c и ее интенсивность m_l .

Возможно использование и других измерений параметров падающей, отраженной от воздушной

Рис. 5. Зависимости начальной координаты распределенной массы ξ_c (а) и интенсивности распределенной массы m_l (б) от $(w_r)_1$ для различных значений $(w_r)_2$: -0.0091 (1); -0.0095 (2); -0.0099 (3)

полости волн и проходящей волны.

Анализ отраженных волн в стержне позволяет сделать вывод о том, что амплитуда и сдвиг фазы зависят от начальной координаты распределенной массы ξ_c и ее интенсивности m_l . Таким образом, сдвиг фазы в отраженной волне можно использовать для определения начальной координаты распределенной массы ξ_c и ее интенсивности m_l .

Полученная методика может использоваться при разработке системы диагностирования длинных трубопроводных систем.

Список литературы

- Сидоров Б.В., Мартынов С.А. Рекомендуемая технология диагностики подземных трубопроводов // Контроль. Диагностика. 2005. № 12. С. 18–19.
- [2] Ахтямов А.М., Аюпова А.Р. О решении задачи ди-

агностирования дефектов в виде малой полости в стержне // Журнал Средневолжского математического общества. 2010. Т. 12, № 3. С. 37–42.

- [3] Ахтямов А.М., Аюпова А.Р. Определение полости в стержне методом отрицательной массы // Дефектоскопия. 2010. № 5. С. 29–35.
- [4] Timoshenko S., Young D.H., Weaver. W. Vibration problems in engineering. John Wiley & Sons. 1974. 472 р. (Русск. пер.Тимошенко С.П., Янг Д.Х., Уивер У. Колебания в инженерном деле. М.: Машиностроение, 1985. 472 с.)
- [5] Ильгамов М.А., Хакимов А.Г. Отражение продольной волны от надреза в стержне, погруженном в вязкую жидкость // Вычислительная механика сплошных сред. 2010. Т. 3, № 3. С. 58–67.