ISSN 2658-5782 Tom 18 (2023), № 4, c. 393-396

Многофазные системы

Получена: 15.09.2023

Принята: 10.11.2023

http://mfs.uimech.org/2023/pdf/mfs2023.4.122.pdf DOI:10.21662/mfs2023.4.122

от выполния конференция в спожных стана с

Об учете влияния стратификации жидкости при моделировании движения подводного глайдера дискообразной формы

Коваль К.А., Сухоруков А.Л.

АО «ЦКБ МТ "Рубин"», Санкт-Петербург

Введение

В рамках работы рассматривается движение подводного глайдера дискообразной формы в стратифицированной жидкости, состоящей из двух слоев, обладающих различной плотностью. Для учета изменения гидродинамических характеристик (ГДХ) глайдера при движении вблизи скачка плотности предложен метод совместного решения уравнений динамики вязкой жидкости и уравнений движения подводного аппарата. Применение данного подхода позволит более точно прогнозировать параметры движения глайдеров в реальных акваториях.

Подводный глайдер дискообразной формы

В настоящее время количество и номенклатура задач, выполняемых с помощью подводных робототехнических средств, неуклонно возрастает. В некоторых ситуациях целесообразно использование такого класса аппаратов, как подводные глай-

деры, отличающиеся малошумностью и высокой энергетической эффективностью.

На Рис. 1 показан один из возможных вариантов конструктивного исполнения глайдера — аппарат дискообразной формы, разработанный японскими специалистами [1]. Его преимуществом является «всенаправленность» — возможность одинаково маневрировать в любом направлении. Система управления плавучестью, благодаря которой глайдер способен осуществлять перемещения в пространстве, состоит из четырех гидроцилиндров, способных принимать или удалять забортную воду.

Учет стратификации жидкости при моделировании движения

Реальные акватории характеризуются значительной пространственной неоднородностью гидрофизических полей. Одним из наиболее простых для рассмотрения типов стратификации является резкий скачок плотности:

$$\rho_w(y) = \begin{cases} \rho_1, & y > y_{\Delta \rho}; \\ \rho_1 + \Delta \rho, & y \leqslant y_{\Delta \rho}; \end{cases}$$
 (1)

где ρ_w — плотность жидкости; ρ_1 — плотность верхнего слоя; $\Delta \rho$ — значение скачка плотности; $y_{\Delta \rho}$ — координата скачка плотности.

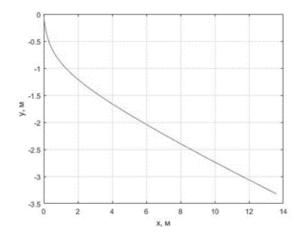
[©] Институт механики им. Р.Р. Мавлютова УФИЦ РАН

[©] Институт проблем механики им А.Ю. Ишлинского РАН

[©] Коваль Кирилл Алексеевич, koval.kir2014@yandex.ru Сухоруков Андрей Львович, su_andr@yahoo.com

394 Многофазные системы

Рис. 1. Глайдер дискообразной формы


При изменении плотности жидкости изменяются действующие на аппарат выталкивающая и гидродинамическая силы, восстанавливающий момент, связанный с остойчивостью, а также избыточная плавучесть, создаваемая при помощи гидроцилиндров. С учетом данных поправок можно модифицировать математическую модель движения глайдера [2] для случая стратифицированной жидкости. На основе данной модели были определены параметры движения глайдера при его погружении с пересечением скачка плотности. Анализ траекторий, полученных при различных значениях $\Delta \rho$ и показанных на Рис. 2, позволяет сделать вывод, что скачок плотности оказывает заметное влияние на динамику аппарата, вплоть до невозможности преодолеть пикноклин с использованием штатных средств управления плавучестью.

Сопряженный подход при моделировании движения

При использовании классического подхода к моделированию движения подводного объекта предполагается, что ГДХ объекта постоянны. Однако, при взаимодействии подводного аппарата с

пикноклином гидродинамические реакции сильно зависят не только от угла атаки, но и от других параметров, характеризующих положение глайдера относительно скачка плотности [3]. Одним из способов учета влияния стратификации на ГДХ может быть совместное решение уравнений динамики вязкой жидкости и уравнений движения аппарата. Суть метода заключается в том, что на каждом временном шаге в гидродинамическом решателе вычисляются силы и моменты, действующие на объект со стороны жидкости, затем на основе этих данных решаются уравнения движения глайдера и определяются перемещения для следующего временного шага. Таким образом, перемещения объекта и воздействия на него со стороны потока взаимосвязаны.

В качестве валидационной задачи для подтверждения адекватности метода рассматривалось всплытие дискообразного глайдера в однородной жидкости. На Рис. 3 показано изменение положения глайдера в процессе расчета. Сопоставление параметров движения, полученных с помощью классического и предложенного метода показано на Рис. 4.

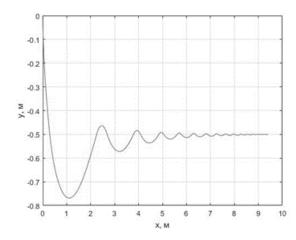


Рис. 2. Траектории при $\Delta \rho = 3$ кг/м 3 (слева) и $\Delta \rho = 5$ кг/м 3 (справа)

2023. T. 18. № 4

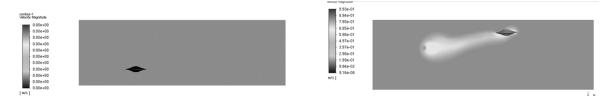


Рис. 3. Изменение положения глайдера в процессе численного расчета с применением сопряженного подхода

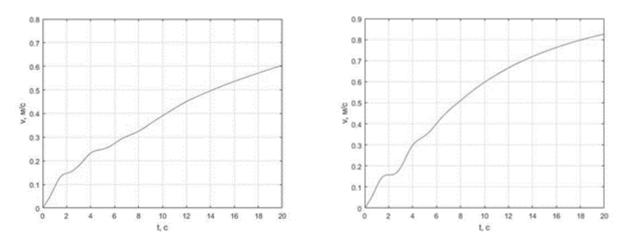


Рис. 4. Изменение положения глайдера в процессе численного расчета с применением сопряженного подхода

После подтверждения адекватности сопряженного подхода он был применен для моделирования погружения глайдера в стратифицированной среде. Задание слоев жидкости различной плотности внутри расчетной области осуществлялось при помощи метода Volume—of—Fluid (VoF). На Рис. 5 показано пересечение глайдером скачка плотности. Параметры движения, полученные при моделировании на основе классического и сопряженного подходов, показаны на Рис. 6. Видно, что в процессе приближения к скачку плотности и при его

пересечении проявляется различие между результатами. Это свидетельствует о влиянии изменения ГДХ при взаимодействии подводного аппарата с пикноклином.

Заключение

В результате выполнения работы была предложена модификация математической модели движения подводного аппарата, позволяющая учитывать влияние стратификации жидкости. Разработан метод совместного численного интегрирова-

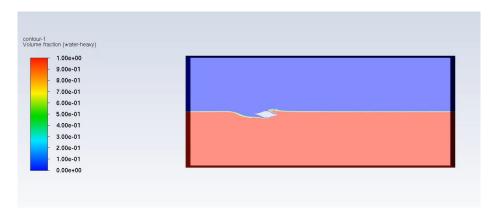
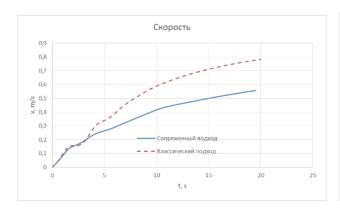



Рис. 5. Пересечение глайдером пикноклина

396 Многофазные системы

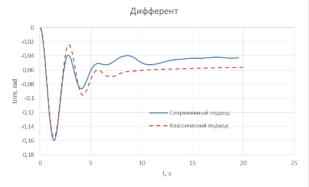


Рис. 6. Параметры движения глайдера (скорость и дифферент) при погружении с пересечением скачка плотности

ния уравнений гидродинамики и уравнений движения подводного аппарата. Использование предложенных подходов позволит значительно улучшить качество моделирования движения глайдеров с учетом реальной гидрологии, а также разработать системы управления, обеспечивающие эффективность и безопасность маневрирования.

Список литературы

- [1] Koterayama W., Nakamura M., Ito Y., Yoshimura H. Underwater Vehicle for Practical Use in Ocean Observations. Proceedings of the Tenth (2012) ISOPE Pacific/Asia Offshore Mechanics Symposium. Vladivostok, Russia, October 3-5, 2012. Pp. 170–175.
- [2] Сухоруков А.Л., Титов М.А. Сопоставительный анализ параметров движения подводного глайдера дискообразной формы // Фундаментальные и прикладные проблемы техники и технологии. 2022. № 4(354). С. 38–47.
- [3] Гурьев Ю.В., Слуцкая М.З. Основные закономерности гидродинамического воздействия натурных морских условий на подводные объекты. Спб., Научный журнал «Морские интеллектуальные технологии». 2020. Т. 1(2). С. 10–16.