

Экспериментальное изучение реологии крови при различных скоростях деформации сдвига

Рахимов А.А.

Институт механики им. Р.Р. Мавлютова УФИЦ РАН, Уфа

В настоящее время изучение клинических патологических процессов не обходится без определения показателей, характеризующих состояние микроциркуляторного русла и реологических показателей крови. Общепризнанным фактом является влияние реологических свойств крови на микроциркуляцию. Кровь дисперсная среда, и её реология отличается от реологии ньютоновских жидкостей. При снижении скорости движения крови вязкость увеличивается [1]. Более двадцати лет назад был описан синдром гипервязкости крови. В дальнейшем он был обнаружен при сердечно-сосудистых заболеваниях, при многих формах рака, хронической обструктивной болезни легких и других хронических заболеваниях. Проявлением такой вязкости, в большинстве случаев, является агрегация «дисперсных частиц» – эритроцитов крови, приводящая к закупорке кровеносных капилляров, что является ничем иным как эффектом динамического запирания [2]. Динамическое запирание крови дает новое представление о возникновении инфарктов и инсультов и, наряду со знанием реологических особенностей крови, может лечь в основу новых методик для лечения этих и других сосудистых заболеваний. Многочисленные измерения реологических свойств крови показали значительный разброс значений для различных порций крови, взятых у здоровых и пациентов и обнаружили высокую степень аппроксимации степенной функцией Оствальда-де Вааля в диапазоне скоростей деформации 0,5-800 1/с. Аппроксимация уравнением Кэссона дает небольшое различие в диапазонах скоростей деформации менее 10 1/с. При движении дисперсии через ступенчатое сужение, как в случае эмульсии, так и крови обнаруживается асимметричная картина течения и поля скоростей вблизи входа и выхода в сужение [3]. Исследование гемореологических и гемодинамических показателей крови проводилось с нативной (цельной) кровью. Нативная кровь наполовину состоит из форменных элементов, основную долю которых составляют эритроциты (дискоциты), наличие которых и определяет реологические свойства крови [4]. При разведении крови физиологическим раствором отмечалось седиментация эритроцитов - образование монетных столбиков, однако при исследовании той же крови при разведении ее плазмой в соотношении 1:10 монетные столбики имели меньшую длину (агрегированные цепи), возможно обусловленные более физиологичными условиями плазмы. Гемореологические характеристики определялись по данным, полученным на прецизионном реометре HAAKE MARS III с измерительной системой двойной конус-пластина. Измерения проводились при температуре 37°C, которая соответствует физиологической температуре внутренней среды человека. Диапазон скоростей деформации сдвига задавали от 1 до 500 1/с (прямой ход) и обратно от 500 до 1 1/с (обратный ход). В некоторых случаях, измерения при обратном ходе отличались от измерений при прямом ходе, поэтому были проведены измерения зависимости напряжения сдвига от времени при постоянных скоростях деформации сдвига, равных 100 и 500 1/с. Вначале задавалось вращение при 100 1/с, затем продолжалось вращение при 500 1/с в течение 5 минут каждое (рис. 1).

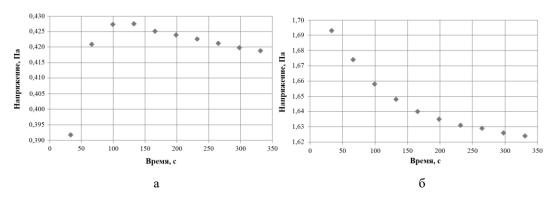


Рис. 1. Изменение от времени напряжения сдвига при постоянных скоростях деформации сдвига 100 (а) и 500 (б) 1/с

При 100 1/с обнаружились реопектические свойства, которые проявляются в течение первых 100 секунд, далее в течение 200 секунд изменения незначительны. При 500 1/с за 5 минут напряжение сдвига падает на 4%. При нашей схеме эксперимента при 500 1/с за 60 секунд изменения незначительны, составляют порядка 1%. При обратном ходе за счет изменения свойств дисперсий различия могут достигать 1-2%. При аппроксимации степенной функцией Оствальда-де Вааля параметры приведены в табл. 1.

Табл. 1. Значения измеренных эффективных вязкостей при скоростях деформации сдвига, равных 10 и 100 1/с и

значения коэффициентов консистентности (k) и показателя неньютоновского поведения (n)

№	Эффективная вязкость (мПа·с)				Коэффициенты из формулы $ au=k\gamma^n$			
паци-	при 10 1/с прямой обратный		при 100 1/с		(напряжение сдвига τ в мПа)			
ента								
	прямой	*	прямой	обратный	k прям.	_	n прям.	*
1	ХОД 4.76	ход	ход	ход 2.70	ход	ход	ХОД	ход
1	4,76	5,87	3,80	3,79	6,5	8,8	0,879	0,823
2	5,19	6,15	4,05	4,04	7,6	9,7	0,861	0,818
3	5,79	10,32	4,59	4,60	9,0	17,5	0,850	0,720
4	6,77	7,62	4,66	4,63	10,6	11,6	0,827	0,811
5	6,96	7,95	5,07	4,97	11,0	9,9	0,833	0,858
6	6,21	8,05	5,14	4,84	7,3	12,5	0,917	0,806
7	6,52	7,28	4,57	4,53	10,4	10,5	0,825	0,824
8	5,62	7,07	4,37	4,38	8,3	7,3	0,860	0,891
9	6,72	8,03	4,47	4,38	11,2	11,8	0,806	0,798
10	3,94	4,29	3,24	3,19	5,4	5,7	0,885	0,877
11	6,31	7,43	4,71	4,61	9,6	8,2	0,845	0,879
12	5,73	6,95	4,53	4,37	8,2	8,3	0,867	0,867
13	7,70	7,53	4,07	4,18	13,2	25,7	0,757	0,6301
14	6,18	7,32	4,41	4,44	10,1	10,1	0,821	0,830
15	5,50	6,99	4,51	4,44	8,7	8,6	0,850	0,862
16	5,52	6,25	4,10	4,07	9,1	9,3	0,825	0,825
17	4,40	6,11	4,21	3,98	4,8	9,1	0,957	0,827

В начале эксперимента эритроциты оседают, образуется прослойка плазы, а при обратном ходе эритроциты в объеме перемешаны, поэтому при малых скоростях деформации вязкость для обратного хода выше. Для больших скоростей деформации, наоборот, вязкость прямого хода выше [4], что можно объяснить различной структуризацией эритроцитов при разных скоростях деформации, поскольку при больших скоростях деформации эритроциты выстраиваются в линию с прослойкой плазмы [1]. Различие эффективной вязкости после разных приложенных деформаций сдвига может, в дальнейшем, привести к выработке методики диагностики свойств крови у больных, предрасположенных к сердечно-сосудистым заболеваниям.

Исследование выполнено за счет гранта Российского научного фонда № 24-21-00403, https://rscf.ru/project/24-21-00403/.

Список литературы

- [1] Рахимов А.А., Бурдюк Ю.В., Ахметов А.Т. Особенности течения крови в капиллярах при малых перепадах давления // Современные проблемы науки и образования. 2012. № 3. https://science-education.ru/ru/article/view?id=6375
- [2] Рахимов А.А., Ахметов А.Т., Валиев А.А., Асадуллин Р.Р. Исследование эффекта динамического запирания эмульсий, содержащих твердые включения // Многофазные системы. 2018. Т. 13, № 4. С. 118-126.
- [3] Ахметов А.Т., Валиев А.А., Рахимов А.А., Саметов С.П. Анизотропные свойства крови в сосуде со стенозом // Доклады академии наук. 2018. Том 483, № 2. С. 145-149.
- [4] Ахметов А.Т., Валиев А.А., Рахимов А.А., Саметов С.П., Хабибуллина Р.Р. Микрогидродинамика крови при стенозе сосудов // Труды Института механики им. Р.Р. Мавлютова Уфимского научного центра РАН. 2016. Т. 11, №2. С.210–217.