

Исследование волн давления в канале с пузырьковым кластером сферической формы

Фаттахов С.Р.

Уфимский университет науки и технологий, *Уфа*

Работа посвящена моделированию двумерных волн в пузырьковой жидкости. Характеристики распространяющихся в жидкости волн до и после прохождения ими через пузырьковую область могут оказаться существенно различными. Эта особенность представляет значительный интерес как для теории, так и для практики. В частности, на практике следует учитывать, что амплитуда волн, проходящих через пузырьковую область, может как уменьшаться, так и увеличиваться. Это важно, например, при разработке и эксплуатации различных подводных объектов. Указанные особенности можно также целенаправленно использовать на практике, например, путем создания различных пузырьковых завес возле конструкций в жидкости для гашения падающих на них интенсивных волн и тем самым избегать разного рода разрушений. К настоящему времени одномерные волны в пузырьковой жидкости хорошо изучены [1–3] и на данный момент активно исследуются двумерные волны. Одной из интереснейших задач волновой динамики пузырьковой жидкости, в которой ярко проявляются многомерные эффекты, является взаимодействие ударной волны с пузырьковым кластером в жидкости.

Пусть в канале, заполненном жидкостью, находится прилегающая к одному из торцевых границ канала пузырьковая зона в форме сферы (Рис. 1). Рассмотрим двумерные волновые возмущения. Такая ситуация может реализоваться, например, при воздействии на систему граничным давлением ($p=p^0(r,t)$) при $z=z_0$, где R_{cl} – характерный радиус пузырьковой области, R_c – радиус канала, L_c – длина канала, ΔP_0 – амплитуда волны давления).

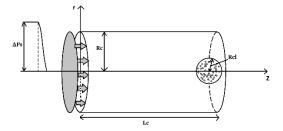
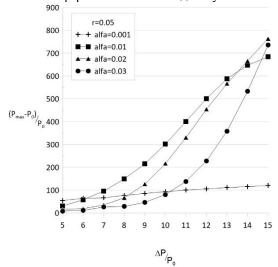


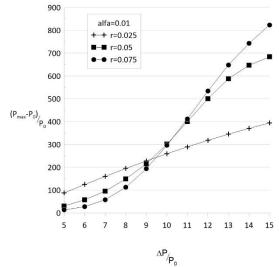
Рис. 1. Схематическое изображение расчетной области

Для описания движения пузырьковой жидкости при обычных для таких систем допущениях примем систему, состоящую из уравнений масс, числа пузырьков, импульсов и давления в пузырьках в односкоростном приближении [1]:

$$\frac{\mathrm{d}\,\rho_{i}}{\mathrm{d}t} + \rho_{i} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0 \ (i = l, g), \ \frac{\mathrm{d}\,n}{\mathrm{d}t} + n \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = 0, \ \rho \frac{\mathrm{d}\,u}{\mathrm{d}t} + \frac{\partial p_{l}}{\partial x} = 0, \ \rho \frac{\mathrm{d}\,v}{\mathrm{d}t} + \frac{\partial p_{l}}{\partial y} = 0, \ \rho = \rho_{g} + \rho_{l},$$

$$\frac{\mathrm{d}\,p_{g}}{\mathrm{d}t} = -\frac{3\gamma\,p_{g}}{a}\,w - \frac{3(\gamma - 1)}{a_{0}}\,q, \ w = \frac{\mathrm{d}a}{\mathrm{d}t}, \left(\frac{\mathrm{d}}{\mathrm{d}t} = \frac{\partial}{\partial t} + u\,\frac{\partial}{\partial x} + v\,\frac{\partial}{\partial y} \right), \ \alpha_{l} + \alpha_{g} = 1, \ \rho_{i} = \rho_{i}^{0}\alpha_{i}, \ \alpha_{g} = \frac{4}{3}\pi na^{3},$$


где a — радиус пузырьков, p_i — давления фаз, q — интенсивность теплообмена, n — число пузырьков в единице объема, w — радиальная скорость пузырьков, ρ_i^0 — истинные плотности фаз, γ — показатель адиабаты для газа, α_i — объемные содержания фаз. Скорости u и v соответствуют движению по координатам x и y. Нижними индексами i=l, g отмечены параметры жидкой и газовой фаз.


В данной работе исследовалось влияние начального импульса на величину максимального давления в случаи пузырьковых кластеров с разными характеристиками. У пузырьковой завесы варьировались радиус R_c

=(0.025м, 0.05м, 0.075м) это рисунок 3 и объемное содержание пузырьков $\alpha_i=(0.001,\ 0.01,\ 0.02,\ 0.03)$ это рисунок 2

По рис. 2 можно заметить, что при объемном содержании 0.001 увеличение давления ведет себя линейно. данный эффект связываем с очень большой разницей скоростей волны в "чистой" и пузырьковой жидкостях. В остальных же случаях видно, что в системе аккумулируется большее давление при большем значении начального импульса.

По рис. 3 видно, что при малом радиусе пузырькового кластера 0.025м. также увеличение давления ведет себя линейно. Еще стоит отметить, что при силе начального импульса равной 9 атмосфер существует точка, где меняется поведение кривых. До 9 атмосфер большие завесы дают меньшее увеличение давления, а после 9 атмосфер большие завесы дают уже большее давление.

Рис. 2. Зависимость максимального давления от силы начального импульса при разных объемных содержаниях.

Рис. 3. Зависимость максимального давления от силы начального импульса при разных радиусах пузырьковой завесы.

Результаты, полученные в данной работе в предельных случаях совпадают с работами [4, 5].

Список публикаций:

- [1] Нигматулин Р.И. Динамика многофазных сред. М.: Наука, 1987, Т. 1,2.
- [2] Кедринский В.К. Гидродинамика взрыва: эксперимент и модели. Новосибирск: Изд-во СО РАН, 2000.
- [3] Накоряков В.Е., Покусаев Б.Г., Шрейбер И.Р. Волновая динамика газо- и парожидкостных сред. M: Энергоатомиздат, 1990. 248 с: ил.
- [4] Галимзянов М.Н. Динамика импульсного сигнала в цилиндрическом канале с жидкостью, содержащем сферический пузырьковый кластер // Вестник Башкирского университета. 2022. Т. 27. № 2. С. 275-286. DOI: 10.33184/bulletin-bsu-2022.2.5
- [5] Галимзянов М.Н., Гималтдинов И.К., Кочанова Е.Ю. Взаимодействие волны давления в цилиндрическом канале со сферическим пузырьковым кластером // Прикладная механика и техническая физика. 2023. Т. 64. № 2. С. 96-104. DOI: 10.15372/PMTF202215182