ISSN 2658–5782
DOI 10.21662
Electronic Scientific Journal





© Институт механики
им. Р.Р. Мавлютова
УФИЦ РАН

Яндекс.Метрика web site traffic statistics

A.A. Mukhutdinova, A.D. Nizamova, V.N. Kireev, S.F. Urmancheev Experimental setup for researching the stability of fluid flow. Multiphase Systems. 19 (2024) 1. 35–39 (in Russian).
2024. Vol. 19. Issue 1, Pp. 35–39
URL: http://mfs.uimech.org/mfs2024.1.005,en
DOI: 10.21662/mfs2024.1.005
Experimental setup for researching the stability of fluid flow
A.A. Mukhutdinova, A.D. Nizamova, V.N. Kireev∗∗, S.F. Urmancheev
Mavlyutov Institute of Mechanics UFRC RAS, Ufa, Russia
∗∗Ufa University Science and Technology, Ufa, Russia

Abstract

The problem of studying the stability of the flow of a thermoviscous liquid is relevant in connection with the need to develop methods for controlling flow regimes in industrial condensers and heat exchange devices. These devices play an important role in a variety of technological processes, from food production to materials processing, and their effectiveness is directly dependent on the flow regime they establish. Awareness of the importance of both laminar and turbulent flow regimes leads to the need to balance between energy efficiency, which is often preferable to laminar flow, and heat and mass transfer efficiency, which is characteristic of turbulent flow. This makes it important to study and control the stability of the flow. As the speed of fluid flow increases, laminar flow loses stability and disturbances arise, which can lead to the formation of a secondary nonlinear regime that preserves the main characteristics of laminar flow, or to flow turbulization, which in turn can have a significant impact on the efficiency of technical devices. Although a lot of work has been done to study the stability of the flow of homogeneous liquids in channels and their spectral characteristics, the importance of taking temperature differences into account is often overlooked. However, it is the dependence of liquid viscosity on temperature that plays a significant role in determining flow patterns and requires additional study. Despite the ongoing numerical studies of the stability of fluid flow, there remains a need to compare experimental data with the results of numerical modeling to obtain a more complete understanding of the processes occurring in the system. In this regard, within the framework of this work, an experimental setup of an annular channel was developed and assembled in order to conduct a detailed experimental study of the stability of fluid flow and subsequently compare the results obtained with numerical simulations, which will provide more accurate data for further improving the design and operation of industrial devices.

Keywords

thermoviscous liquid,
flow stability,
annular channel,
experimental setup

Article outline

The problem of studying the stability of the flow of a thermoviscous liquid is important in the development of effective methods for controlling flow regimes in industrial condensers and heat exchange devices. Within various technological processes, both laminar and turbulent flow regimes play an important role. The laminar regime is important from the point of view of energy efficiency, while the turbulent regime is preferable when considering the efficiency of heat and mass transfer. However, as the flow speed increases, laminar motion loses stability, and disturbances arise that can lead to the formation of a secondary nonlinear regime or to turbulization of the flow.

Despite many studies on the stability of the flow of homogeneous liquids in channels and the analysis of their spectral characteristics, in most cases possible temperature differences are ignored. However, it is worth noting that the nature of the dependence of liquid viscosity on temperature has a significant impact on flow patterns. Currently, numerical studies of the stability of liquid flow in various channels are also being carried out, but the results of experimental studies have not been compared with numerical models.

In this work, an experimental setup of an annular channel was developed and assembled in order to conduct an experimental study of the stability of fluid flow. This will allow the comparison of experimental and numerical simulation results, providing a more complete understanding of the system processes and providing the basis for further improvements in heat transfer and flow control technologies in industrial applications.

To study and visualize the laminar-turbulent transition during the flow of thermoviscous liquids in an annular channel, an experimental setup was designed and assembled, a schematic diagram and photograph of which are presented in the article.

References

  1. Petukhov B.S. Heat transfer and friction in turbulent pipe flow with variable physical properties // Advances in Heat Transfer. 1970. V. 6. P. 503–564.
    DOI: 10.1016/S0065-2717(08)70153-9
  2. Orszag S.A. Accurate solution of the Orr–Sommerfeld equation // J. of Fluid Mech. 1971. V. 50, Iss. 4. P. 689–703.
    DOI: 10.1017/S0022112071002842
  3. Шкаликов А.А. Спектральные портреты оператора Орра–Зоммерфельда при больших числах Рейнольдса // Труды международной конференции по дифференциальным и функционально-дифференциальным уравнениям — сателлита Международного конгресса математиков ICM-2002 (Москва, МАИ, 11–17 августа 2002). Часть 3. СМФН. 2003. Т. 3. С. 89–112.
    MathNet: cmfd17
    Shkalikov A.A. Spectral portraits of the Orr–Sommerfeld operator for large Reynolds numbers // Journal of Mathematical Sciences. 2004. V. 124, No. 6. P. 5417–5441.
    DOI: 10.1023/B:JOTH.0000047362.09147.c7
  4. Скороходов С.Л. Численный анализ спектра задачи Орра–Зоммерфельда // Журнал вычислительной математики и математической физики. 2007. Т. 47, № 10. С. 1672–1691.
    EDN: IARDQF
    Skorohodov S.L. Numerical analysis of the spectrum of the Orr–Sommerfeld problem // Computational mathematics and mathematical physics. 2007. V. 47, Iss. 10. P. 1603–1621.
    DOI: 10.1134/S096554250710003X
  5. Урманчеев С.Ф., Киреев В.Н. Установившееся течение жидкости с температурной аномалией вязкости // Доклады академии наук. 2004. Т. 396, № 2. С. 204–207.
    EDN: OPSUST
    Urmancheev S.F., Kireev V.N. Steady flow of a fluid with an anomalous temperature dependence of viscosity // Doklady Physics. 2004. V. 49, No. 5. P. 328–331.
    DOI: 10.1134/1.1763627
  6. Низамова А.Д., Киреев В.Н., Урманчеев С.Ф. Устойчивость течения термовязкой жидкости в канале теплообменника // Многофазные системы. 2020. Т. 15, № 1–2. С. 72.
    Nizamova A.D., Kireev V.N., Urmancheev S.F. [Stability of thermoviscous fluid flow in the heat exchanger channel] Multiphyse systems. 2020. V. 15, No. 1–2. P. 72 (in Russian).
    DOI: 10.21662/mfs2020.1-2
  7. Киреев В.Н., Низамова А.Д., Урманчеев С.Ф. Некоторые особенности гидродинамической неустойчивости течения термовязкой жидкости в плоском канале // Прикладная математика и механика. 2019. Т. 83, № 3. С. 454–459.
    Kireev V.N., Nizamova A.D., Urmancheev S.F. [Some features of the hydrodynamic instability of the flow of a thermally viscous fluid in a flat channel] Prikladnaya mexanika i matematika. 2019. V. 83, No. 3. P. 454–459 (in Russian).
    DOI: 10.1134/S003282351903007X
  8. Низамова А.Д., Киреев В.Н., Урманчеев С.Ф. Влияние параметров течения термовязкой жидкости в кольцевом канале на изменение критического числа Рейнольдса // Многофазные системы. 2023. Т. 18, № 3. С. 150–151.
    Nizamova A.D., Kireev V.N., Urmancheev S.F. [Influence of flow parameters of a thermoviscous fluid in an annular channel on the change in the critical Reynolds number] Multiphyse systems. 2023. V. 18, No. 3. P. 150–151 (in Russian).
    DOI: 10.21662/mfs2023.3.038
  9. Nizamova A.D., Kireev V.N., Urmancheev S.F. Influence of Temperature Dependence of Viscosity on the Stability // Lobachevskii Journal of Mathematics. 2023 V. 44, No. 5 P. 1778–1784.
    DOI: 10.1134/S1995080223050463
  10. Куликов Ю.М., Сон Э.Е Об устойчивости течения термовязкой жидкости в канале // Теплофизика и аэромеханика. 2017. Т. 24, № 6. С. 909–928.
    EDN: ZXYFTD
    Kulikov Y.M., Son E.E. On stability of channel flow of thermoviscous fluid // Thermophysics and Aeromechanics. 2017. Т. 24, No. 6. С. 883–900.
    DOI: 10.1134/S0869864317060075
  11. Куликов Ю.М., Сон Э.Е Режимы течения термовязкой жидкости в плоском неизотермическом слое // Теплофизика и аэромеханика. 2018. Т. 25, № 6. С. 877–898.
    EDN: VSCMUG
    Kulikov Y.M., Son E.E. Thermoviscous fluid flow modes in a plane nonisothermal layer // Thermophysics and Aeromechanics. 2018. V. 25, № 6. P. 845– 864.
    DOI: 10.1134/S0869864318060069